Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 324))

Abstract

Photonic crystals are artificial nanostructures constructed by optical atoms arranged in a background medium with a period on the order of half the optical wavelength[1–4]. They are of great interest since those made of semiconductors have the possibility of spontaneous emission control, which realizes the thresholdless operation of laser diodes. A large refractive index contrast between semiconductor and air provides a wide photonic bandgap and hence provides an effective control of spontaneous emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yablonovitch, E. (1987) Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58 2059–2062.

    Article  ADS  Google Scholar 

  2. Yablonovitch, E., Gmitter, T. J., Meade, R. D., Rappe, A. M., Brommer, K. D. and Joannopoulos, J. D. (1991) Donor and acceptor modes in photonic band structure, Phys. Rev. Lett.67 3380–3383.

    Article  ADS  Google Scholar 

  3. John, S. (1987) Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 2486–2489.

    Article  ADS  Google Scholar 

  4. Ho, K. M., Chan, C. T. and Soukoulis, C. M. (1990) Existence of a photonic gap in periodic dielectric structures, Phys. Rev. Lett. 65 3152–3155.

    Article  ADS  Google Scholar 

  5. Plihal, M. and Maradudin, A. A. (1991) Photonic band structure of two-dimensional system: the triangular lattice, Phys. Rev. B 44 8565–8571.

    Article  ADS  Google Scholar 

  6. Meade, R. D., Brommer, K. D., Rappe A. M. and Joannopoulos, J. D. (1992) Existence of a photonic band gap in two dimensions, Appl. Phys. Lett. 61 495–497.

    Article  ADS  Google Scholar 

  7. Yablonovitch, E. (1993) Photonic band-gap structure, J. Opt. Soc. Am B 10 283-295.

    Article  ADS  Google Scholar 

  8. Scherer, A., Cheng, C. C., Yablonovitch, E., Arbet-Engels, V. (1995) Photonic bandgap crystals at optical wavelengths, Dig. The Pacific Rim Conf. on Lasers and Electro-Optics, TuLl.

    Google Scholar 

  9. De Martini, F. and Jacobovitz, G. R. (1988) Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity, Phys. Rev. Lett.60 1711–1713.

    Article  ADS  Google Scholar 

  10. Yamamoto, Y., Machida, S., Igeta, K. and Björk, G. (1991) Controlled spontaneous emission in microcavity semiconductor lasers in Coherence, amplification and quantum effects in semiconductor lasers (Ed. Yamamoto, Y.) John Wiley & Sons, New York, 561–615.

    Google Scholar 

  11. Yokoyama, H., Nishi, K., Anan, T., Yamada, H., Brorson, S. D. and Ippen, I. P. (1990) Enhanced spontaneous emission from GaAs quantum wells with monolithic optical microcavities, Appl. Phys. Lett. 57 2814–2816.

    Article  ADS  Google Scholar 

  12. Baba, T., Hamano, T., Koyama, F. and Iga, K. (1991) Spontaneous emission factor of a microcavity DBR surface emitting laser, IEEE J. Quantum Electron. 27 1347–1358.

    Article  ADS  Google Scholar 

  13. Baba, T. and Iga, K. (1995) Spontaneous emissions in microcavity surface emitting lasers in Spontaneous emission and lasing operation in microcavities (Ed. Ujihara, K. and Yokoyama, H.), CRC Press, New York, in print.

    Google Scholar 

  14. Gourley, P. L., Wendt, J. R., Vawter, G. A., Brennan, T. M. and Hammons, B. E. (1994) Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostruc- tures in compound semiconductors, Appl. Phys. Lett. 64 687-688.

    Article  ADS  Google Scholar 

  15. Krauss, T., Song, Y. P., Thorns, S., Wilkinson, C. D. W. and DelaRue, R. M. (1994) Fabrication of 2-D photonic bandgap structures in GaAs/AlGaAs, Electron. Lett 30 1444–1446.

    Article  Google Scholar 

  16. Baba, T. and Koma, M. (1995) Possibility of InP-based 2-dimensional photonic crystal: an approach by the anodization method, Jpn. J. Appl. Phys. 34 1405–1408.

    Article  ADS  Google Scholar 

  17. Leung, K. M. and Liu, Y. F. (1990) Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media, Phys. Rev. Lett. 65 2646–2649.

    Google Scholar 

  18. Zhang, Z. and Satpathy, S. (1990) Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations, Phys. Rev. Lett. 65, 2650–2653.

    ADS  Google Scholar 

  19. Niwa, A., Ohtoshi, T. and Kuroa, T. (1995) Orientation dependence of optical properties in long wavelength strained quantum-well lasers, IEEE J. Selected Topics in Quantum Electron. 1, 211-217.

    Article  Google Scholar 

  20. Tamanuki, T., Koyama, F. and Iga, K. (1992) Interface recombination reduction by (NH 4)2SX- passivation in metalorganic chemical vapor deposition regrown GaAlAs/GaAs buried het- erostructure lasers and estimation of threshold currents in microcavity surface emitting lasers, Jpn. J. Appl. Phys. 31, 3292–3295.

    Article  ADS  Google Scholar 

  21. Maile, B. E., Forchel, A. and Germann, R. (1989) Impact of sidewall recombination on the quantum efficiency of dry etched InGaAs/InP semiconductor wires, Appl. Phys. Lett. 54, 1552–1554.

    Article  ADS  Google Scholar 

  22. Baba, T., Hamasaki, M., Watanabe, N., Matsutani, A., Mukaihara, T., Koyama, F. and Iga, K. (1995) A novel short cavity laser with deep grating DBRs, Proc. Int. Conf. Solid State Devices and Materials, PD-5-4.

    Google Scholar 

  23. Matsutani, A., Tadokoro, T., Koyama, F. and Iga, K. (1993) Reactive ion beam etching for microcavity surface emitting laser fabrication: technology and damage characterization, Mat. Sci. Forum 140–142, 641-658.

    Article  Google Scholar 

  24. O’Reilly, E. P. and Adams, A. R. (1994) Band-structure engineering in strained semiconductor lasers IEEE J. Quantum Electron. 30, 366–379.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Baba, T., Matsuzaki, T. (1996). GaInAsP/InP 2-Dimensional Photonic Crystals. In: Rarity, J., Weisbuch, C. (eds) Microcavities and Photonic Bandgaps: Physics and Applications. NATO ASI Series, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0313-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0313-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6626-6

  • Online ISBN: 978-94-009-0313-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics