Skip to main content

Strategies for the Fabrication of Photonic Microstructures in Semiconductors

  • Chapter
Microcavities and Photonic Bandgaps: Physics and Applications

Part of the book series: NATO ASI Series ((NSSE,volume 324))

Abstract

We discuss technology strategies for the fabrication of both two and three-dimensional photonic microstructures in semiconductors. The importance of the role of III-V semiconductors in optoelectronics is used to justify research on photonic microstructures based on this class of material. The technology armoury already established in III-V semiconductors is outlined, together with ways in which this armoury could be extended to meet the new challenges of fabricating photonic microstructures. While the greater difficulties of realising three-dimensional structures are emphasized, the opportunities for near-future device developments based on two-dimensional photonic microstructures are also recognised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yahlonovitch, E. (1987), “Inhibited spontanous emission in solid-state physics and electronics”, Phys. Rev. Lett., 58, 2059–2062:

    Article  ADS  Google Scholar 

  2. Yahlonovitch, E. (1993), “Photonic band-gap structures”, J. Opt. Soc. Am B, 10, 283–295; Yablonovitch, E., ‘Photonic Bandstructure’, Chapter in this hook

    Article  ADS  Google Scholar 

  3. Cheng, C.C., Sherer, A., Arbet-Engels, V. and Yahlonovitch, E. (1995), “Fabrication of Photonic Band-gap Structures”, 39th Electron, Ion and Photon Beam Meeting, to be published in Jour. Vac. Sci. Tech. B, Nov/Dec, 1995.

    Google Scholar 

  4. Goldstein, L. (1992), “Main aspects of MOCVD and MBE growth technique”, in ‘Waveguide Optoelectronics’, J.H. Marsh and R.M. De La Rue (eds.) (1992), NATO ASI Series E: Applied Sciences, 226, 99–122.

    Chapter  Google Scholar 

  5. Aoki, M., Sano, H., Suzuki, M., Takahashi, M., Uomi, K. and Takai, M. (1991), “Novel structure MQW electroabsorption modulator/DFB-laser integrated device fabricated by selective area MOCVD growth”, Electron. Lett., 27, 2138–2140;

    Article  ADS  Google Scholar 

  6. see also Walther., M., Kapon, E., Hwang, D.M., Colas, E. and Nunes, L. (1991), “Observation of electronic subbands in dense arrays of quantum wires grown by organometallic-chemical- vapor deposition on nonplanar substrates”, Phys.Rev. B,45, 6333–6336

    Article  ADS  Google Scholar 

  7. Chavez-Pirson, A., Ando, H., Saito, H. and Kanbe, H. (1994), “Quantum wire microcavity laser made from GaAs fractional layer superlattices”, Appl. Phys. Lett., 64, 1759–1761.

    Article  ADS  Google Scholar 

  8. MacDougal, M.H., Zhao, H., Dapkus, P.D., Ziari, M. and Steier, W.H. (1994), “Wide-band width distributed Bragg reflectors using oxide/GaAs multilayers”, Electron. Lett., 30, 1147–1149.

    Article  Google Scholar 

  9. MacDougal, M.H., Dapkus, P.D., Pudikov, V., Zhao, H. and Yang, G.M. (1995), “Ultralow threshold current vertical-cavity surface-emitting lasers with AlAs oxide- GaAs distributed Bragg reflectors”, IEEE Photon. Tech. Lett., 7, 229–231;

    Article  ADS  Google Scholar 

  10. Yang, G.M., MacDougal,Dapkus, P.D. (1995), “Ultralow threshold current vertical-cavity surface- emitting lasers obtained with selective oxidation”Electron. Lett.,31, 886–888.

    Article  Google Scholar 

  11. Deppe, D.G., Huffaker, D.L., Shin, J. and Deng, Q. (1995), “Very-low-threshold index-confined microcavity lasers”, IEEE Photon. Tech. Lett., 7, 965–967.

    Article  ADS  Google Scholar 

  12. Thompson, G.H.B., “Physics of semiconductor laser devices”, ( John Wiley&Sons, Chichester, 1980 ), 400.

    Google Scholar 

  13. Wilmsen, C.W., Kee, R.W. and Geib, K.M. (1979), “Initial oxidation and oxide/semiconductor interface formation on GaAs”, J.Vac. Sci. Tech, 16, 1434–1438.

    Article  ADS  Google Scholar 

  14. Baba, T. and Koma, M. (1995), “Possibility of InP-based 2-diinensional photonic crystal: an approach by the anodization method”, Jpn. J. Appl. Phys., 34, 1405–1408.

    Article  ADS  Google Scholar 

  15. Krauss, T., Song, Y.P., Thorns, S., Wilkinson, C.D.W. and De La Rue, R.M. (1994), “Fabrication of 2D photonic bandgap structures in GaAs/AlGaAs”, Electron. Lett., 30, 1444–1446.

    Article  Google Scholar 

  16. Krauss, T.F. and De La Rue, R.M. (1995), “Exploring the two-dimensional photonic bandgap in semiconductors”, Chapter in Photonic Bandgap Materials, ed. C. Soukoulis, Kluwer.

    Google Scholar 

  17. Krauss, T.F. and De La Rue, R.M. (1996), “Optical characterisation of waveguide based photonic microstructures”, accepted for publication in Appl. Phys. Lett.

    Google Scholar 

  18. Yi Yan, A., et al (1980), “Two-dimensional grating unit cell demultiplexer for thin- filin optical waveguides”, IEEE J.Quant. Electron., 16, 1089–1092.

    Article  ADS  Google Scholar 

  19. Gruening, U. and Lehmann, V. (1995), “Two-dimensional infrared photonic band gap structure based on porous silicon”, Appl.Phys.Lett., 66, 3254–3256.

    Article  ADS  Google Scholar 

  20. Tabib-Azar, M., Kang, S., Machines, A.N., Power, M.B., Barron, A.R., Jenkins, P.P. and Hepp, A.F. (1993), “Electronic passivation of n-type and p-type GaAs using chemical vapour deposited GaS”, Appl. Phys. Lett., 63, 625–627;

    Article  ADS  Google Scholar 

  21. Hobson, W.S., Mohideen, U., Pearton, S.J., Slusher, R.E. and Ren, F. (1993), “SiNx/sulphide passivated GaAs/AlGaAs microdisk lasers”, Electron. Lett.,29, 2199–2200

    Article  Google Scholar 

  22. Wada, Y. and Wada, K. (1993), “Relaxation of GaAs surface band bending by atomic layer passivation”, J.Vac.Sci. Technol. B, 11, 1598–1602.

    Article  Google Scholar 

  23. De La Rue, R.M. and Marsh, J.H. (1993), “Integration technologies for III-V semiconductor optoelectronics based on quantum well waveguides”, SPIE Critical Reviews, 45, 259–288.

    Google Scholar 

  24. Beauvais, J., Marsh, J.H., Kean, A.H., Bryce, A.C. and Button, C. (1992), “Suppression of bandgap shifts in GaAs/AlGaAs quantum wells using strontium fluoride caps”, Electron. Lett., 28, 1670–1672.

    Article  Google Scholar 

  25. McLean, C.J., McKee, Lullo, G., Bryce, A.C.. De La Rue, R.M. and Marsh, J.H. (1995), “Quantum well intermixing with high spatial selectivity using a pulsed laser technique”, Electron. Lett., 31, 1285–1286.

    Article  Google Scholar 

  26. Yablonovitch, E., Gmitter, T., Harbison, J.P., Bhat, R. (1987), “Extreme selectivity in the lift-off of epitaxial GaAs films”, Appl.Phys.Lett., 51, 2222–2224.

    Article  ADS  Google Scholar 

  27. Demeester, P., Pollentier, I., De Dobbelaere, P., Brys, C., and van Daele, P. (1993), “Epitaxial lift-off and its applications”, Semicond.Sci.Technol., 8, 1124–1135.

    Article  ADS  Google Scholar 

  28. Romanov, S., Johnson, N., SotomayorTorres, C.M., Yates, H.M., Pemble, M., Peaker, A., Butko, V. and Fokin, A., “Self-assembled 3-dimensional arrays of InP quantum wires: impact of the dielectic matrix upon optical properties”, to appear in Quantum Confinement: Quantum wires and clots, Eds S Badyopadhyay, M M Cahay, P J Leburton and M Razeghi, Electrochemical Society, Pennington, USA. (1996);Romanov, S.G., SotomayorTorres, C.M., Yates, H.M., Pemble, M.E. and Butko, V., “Optical properties of self-assembled arrays of InP quantum wires confined in channels of chrysotile asbestos”, in preparation; and S G Romanov and C M Sotomayor Torres, “3D photonic bandgap materials based on opals filled with semiconductors”, this volume.

    Google Scholar 

  29. Haus, J.W. (1994), “A brief review of theoretical results for photonic band structures”, Journ. of Mod. Optics, 41, 195–207.

    Article  ADS  Google Scholar 

  30. Baba, T. and Matsuzaki, “GalnAsP/GaAs 2-Dimensional photonic crystals, this volume.

    Google Scholar 

  31. Gerard, J.M., Izrael,A., Marzin,J.Y., and Padjen,R. (1994), “Photonic bandgap of two-dimensional dielectric crystals”, Solid State Electronics, 37, 1341–1344.

    Article  ADS  Google Scholar 

  32. Wendt,J.R., Vawter,G.A., Gourley,P.L., Brennan,T.M., and Hammons,B.E. (1993), “Nanofabrication of photonic lattice structures in GaAs/AlGaAs”, Journ. Vac. Sci. Tech. B., 11, 2637–2640.

    Article  Google Scholar 

  33. Baba, T and Matsuzaki, T. (1995), “Polarisation changes in spontaneous emission from GalnAsP/InP two-dimensional phototonic crystals”, Electron.Lett., 31, 1776–1778.

    Article  Google Scholar 

  34. Smith, D.R. and Schultz, S. (1994), “Defect studies in a two-dimensional periodic photonic lattice”, Journ. of Mod. Opt., 41, 395–404.

    Article  ADS  Google Scholar 

  35. Inoue, K., Wada, M., Sakoda, K., Yamanaka, A., Hayashi, M.,and Haus, J.W.(1994),“Fabrication of two-dimensional photonic band structure with near-infrared band gap”, Jpn.J.Appl.Phys., 33, L1463–1465.

    Article  ADS  Google Scholar 

  36. Atkin, D., Russel, P.St.J., and Birks, T.A., (1995), “Photonic bandstructure of guided bloch modes in high index films fully etched through with periodic microstruc- ture”, submitted for publication.

    Google Scholar 

  37. Fan, S.H., Villeneuve, P.R., Meade, R.D., Joannopoulos, J.D. (1995), “Design of 3-dimensional photonic crystals at submicron length scales”, Appl. Phys. Lett. 65, 1466–1468; also this volume.

    Article  ADS  Google Scholar 

  38. Levi, A.F.J., McCall, S.L., Pearton, S.J. and Logan, R.A. (1993), “Room temperature operation of submicrometre radius disk laser”, Electron. Lett., 29, 1666–1667; Mohideen, U., “Thumbtack lasers”, this volume.

    Article  Google Scholar 

  39. Zhang, J.P., Chu, D.Y., Wu, S.L., Ho, S.T., Bi, W.G., Tu, C.W., Tiberio, R.C. (1995)“Photonic-wire laser”, Phys.Rev.Lett., 75, 2678–2681

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

De La Rue, R.M., Krauss, T.F. (1996). Strategies for the Fabrication of Photonic Microstructures in Semiconductors. In: Rarity, J., Weisbuch, C. (eds) Microcavities and Photonic Bandgaps: Physics and Applications. NATO ASI Series, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0313-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0313-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6626-6

  • Online ISBN: 978-94-009-0313-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics