Advertisement

Microcavities in Photonic Crystals

  • Pierre R. Villeneuve
  • Shanhui Fan
  • J. D. Joannopoulos
Chapter
Part of the NATO ASI Series book series (NSSE, volume 324)

Abstract

The introduction of a defect in a perfect photonic crystal can lead to the creation of sharp resonant electromagnetic states in the vicinity of the defect. The properties of these modes can be controled simply by changing the nature and the size of the defect. We compute the frequency, polarization, symmetry and field distribution of the resonant modes by solving Maxwell’s equations in the frequency domain. The temporal behavior of the modes is determined by using a time-domain analysis which allows us to compute the coupling efficiency and the losses in the microcavity.

Keywords

Photonic Crystal Defect State Resonant Mode Coupling Efficiency Transverse Electric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993).ADSGoogle Scholar
  2. 2.
    P. R. Villeneuve and M. Piché, Prog. Quantum Electron. 18, 152 (1994).CrossRefGoogle Scholar
  3. 3.
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, New York, 1995 ).zbMATHGoogle Scholar
  4. 4.
    R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. B 48, 8434 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1996).ADSGoogle Scholar
  6. 6.
    A. Yariv, Optical Electronics (Saunders, Philadelphia, 1991).Google Scholar
  7. 7.
    E. Yablonovitch, T. J. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Solid State Commun. 89, 413 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    H. S. Sözüer and J. P. Dowling, J. Mod. Opt. 41, 231 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    G. Feiertag W. Ehrfeld H. Freimuth, R. Weiel, G. Kiriakidis, C. M. Soukoulis, and T. F. Pederson, NATO ASI Series B, Advanced Study Institute on Photonic Band Gap Materials, Greece, June 1995.Google Scholar
  11. 11.
    S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, Appl. Phys. Lett. 65, 1466 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, New York, 1985).Google Scholar
  13. 13.
    P. R. Villeneuve, S. Fan, J. C. Chen, and J. D. Joannopoulos (unpublished).Google Scholar
  14. 14.
    P. R. Villeneuve, S. Fan, J. D. Joannopoulos, Kuo-Yi Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, Appl. Phys. Lett. 67, 167 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    J. S. Foresi, L. C. Kimerling, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos (unpublished)Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Pierre R. Villeneuve
    • 1
  • Shanhui Fan
    • 1
  • J. D. Joannopoulos
    • 1
  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations