Bandgap Engineering of 3-D Photonic Crystals Operating at Optical Wavelengths

  • V. Arbet-Engels
  • E. Yablonovitch
  • C. C. Cheng
  • A. Scherer
Part of the NATO ASI Series book series (NSSE, volume 324)


We describe the fabrication of three-dimensional photonic crystals with bandgaps lying in the near infrared region of the electromagnetic spectrum. By fabricating these nano-structures using a reproducible and reliable procedure consisting of electron beam lithography followed by dry etching, we have produced up to four-layer deep photonic crystals. The spectral response of these devices was tuned by lithographically controlling their spatial periodicities. In the present work, we discuss the elaborate processing steps used to synthesize these three-dimensional dielectric structures and analyze their transmission spectra in comparison with a macro-machined microwave model.


Photonic Crystal Etch Rate Electron Beam Lithography Triangular Array Microwave Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for example the articles in the special issue of J. Opt. Soc. Am. BIO, (February, 1993).Google Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    “Photonic Crystals” by J. D. Joannopoulos, R. D. Meade, J. N. Winn, (Princeton Univ. Press, Princeton NJ, 1995).zbMATHGoogle Scholar
  5. 5.
    E. Yablonovitch, J. Phys.: Condens. Matter 5, 2443 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    P. W. Anderson, Phys. Rev. 109, 1492 (1958).ADSCrossRefGoogle Scholar
  7. 7.
    E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K. M. Ho, Appl. Phys. Lett. 64, 2059 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    E. Ozbay, E. Michel, G. Turtle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, Appl. Phys. Lett. 65, 1617 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, Appl. Phys. Lett. 65, 1466, (1994).ADSCrossRefGoogle Scholar
  10. 10.
    K. M. Ho, C. T. Chan and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    K. M. Leung and Y. F. Liu, Phys. Rev. Lett. 65, 2646 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    Z. Zhang and S. Satpathy, Phys. Rev. Lett. 65, 2650 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    E. Yablonovitch, T. J. Gmitter and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    C. C. Cheng, A. Sherer, J. Vac. Sci. Technol. B 13, (Dec. 1995) submitted for publication.Google Scholar
  15. 15.
    A. Sherer, J. L. Jewell, and J. P. Harbison, Opt. Phot. News 2, 9 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    G. X. Qian and K. M. Leung, Phys. Rev. B44, 11482 (1991).ADSGoogle Scholar
  17. 17.
    W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, amd J. D. Joannopoulos, Phys. Rev. Lett. 68, 2023 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    K. Sakoda, Phys. Rev. B51, 4672 (1995).ADSGoogle Scholar
  19. 19.
    E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • V. Arbet-Engels
    • 1
  • E. Yablonovitch
    • 1
  • C. C. Cheng
    • 2
  • A. Scherer
    • 2
  1. 1.Electrical Engineering DepartmentUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Electrical Engineering DepartmentCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations