Gravitational Scattering Experiments in Infinite Homogeneous N-Body Systems

  • Toshiyuki Fukushige
Conference paper


I performed a series of numerical experiments of the gravitational scattering in infinite homogeneous N-body systems. The infinite homogeneous system is expressed using periodic boundary condition. In the homogeneous systems we can obtain results more straightforword than in spherical systems. Firstly, I investigated upper cutoff of impact parameter in the Coulomb logarithm. There has been two arguments that the upper cutoff should be system size (R) and it should be mean particle distance (RN 1/3). I obtained the result that the upper cutoff is roughly equal to the system size R. Secondly, I investigated exponential divergence of initial small difference. I confirmed that this exponential divergence saturates at a scale of ~RN -1/2.


Impact Parameter System Size Test Particle Exponential Divergence Softening Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chandrasekhar, S.: 1942, Principles of Stellar Dynamics, Dover: New YorkGoogle Scholar
  2. Cohen, R. S., Spitzer, L., and Routly, P. McR., 1950, Phys. Rev., 80, 230.MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. Ewald, P. P., 1921, Ann. Phy., 64, 253.ADSCrossRefGoogle Scholar
  4. Farouki, R., and Salpeter, E. E., 1982, ApJ, 253, 512.ADSCrossRefGoogle Scholar
  5. Farouki, R., and Salpeter, E. E., 1994, ApJ, 427, 676.ADSCrossRefGoogle Scholar
  6. Fukushige, T., and Makino, J., 1994, ApJL, 436, L111.ADSCrossRefGoogle Scholar
  7. Fukushige, T., Makino, J., and Ebisuzaki, T., 1994, ApJL, 436, L107ADSCrossRefGoogle Scholar
  8. Fukushige, T., Makino, J., Nishimura, O., and Ebisuzaki, T., 1995a, PASJ, 47, 493.ADSGoogle Scholar
  9. Fukushige, T., Taiji, M., Makino, J., Ebisuzaki, T., and Sugimoto, D., 1995b, submitted to ApJ.Google Scholar
  10. Funato, Y., Makino, J., and Ebisuzaki, T., 1994, ApJL, 424, L17.ADSCrossRefGoogle Scholar
  11. Goodman, J., Heggie, D. C., Hut, P., 1993, ApJ, 415, 715.ADSCrossRefGoogle Scholar
  12. Huang S., and Dubinski J., Carlberg R. G. 1993, ApJ, 404, 73.ADSCrossRefGoogle Scholar
  13. Kandrup, H. E., 1980, Phys. Rep., 63, 1.MathSciNetADSCrossRefGoogle Scholar
  14. Kandrup, H. E., and Smith, H., 1991, ApJ, 374, 255.MathSciNetADSCrossRefGoogle Scholar
  15. Kandrup, H. E., Smith, H. Jr., and Willmes, D. E., 1992, ApJ, 399, 627.ADSCrossRefGoogle Scholar
  16. Kandrup, H. E., Mahon, M. E., and Smith, H. Jr., 1994, ApJ, 428, 458.ADSCrossRefGoogle Scholar
  17. Lecar M., 1968, Bull. Astron. 3, 91.Google Scholar
  18. Miller R. H., 1964, ApJ 140, 250.ADSCrossRefGoogle Scholar
  19. Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T.: 1986, Numerical Recipes, Cambridge University Press: London/New York, ch 16.2Google Scholar
  20. Quinlan G. D., and Tremarne S., 1992, MNRAS, 259, 505.ADSGoogle Scholar
  21. Sakagami M., and Gouda, N. 1991, MNRAS, 249, 241.ADSGoogle Scholar
  22. Smith, H., 1992, ApJ, 398, 519.ADSCrossRefGoogle Scholar
  23. Suto Y., 1991, PASJ, 43, L9.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Toshiyuki Fukushige
    • 1
  1. 1.Department of Earth Science and Astronomy, College of Arts and SciencesUniversity of TokyoMeguro-ku, Tokyo 153Japan

Personalised recommendations