Skip to main content
  • 122 Accesses

Abstract

Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various chemical models for their range of applicability. Until a comparative approach such as this is taken, trace metal speciation will remain highly uncertain and controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahonen, L., Ervanne, H., Jaakola, T., and Blomqvist, R.: 1994, Radiochim. Acta, XX, 1 – 7.

    Google Scholar 

  • Allison, J. D. and Brown, D. S.: 1995, “MINTEQA2/PRODEFA2 - A geochemical speciation model and interactive preprocessor,” In Chemical Equilibrium and Reaction Models, R.H. Loeppert, A.P. Schwab, and S. Goldberg, editors, Soil Science Society of America Special Publication Number 42, 253 – 270.

    Google Scholar 

  • Allison, J. D., Brown, D. S., and Novo-Gradac, K. J.: 1991 “MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3.00 user’s manual,” EPA-600/3–91–021.

    Google Scholar 

  • Baes,C. F., Jr., Reardon, E. J., and Moyer, B. A.: 1993, /. Phys. Chem 97,12343–12348.

    Article  Google Scholar 

  • Ball, J. W. and Nordstrom, D. K.: 1985, “Major and trace-element analyses of acid mine waters in the Leviathan mine drainage basin, California/Nevada — October, 1981 to October, 1982,” U.S. Geological Survey Water-Resources Investigations Report 85- 4169.

    Google Scholar 

  • Ball, J. W. and Nordstrom, D. K.: 1989, “Final revised analyses of major and trace elements from acid mine waters in the Leviathan mine drainage basin, California and Nevada - October 1981 to October 1982,” U.S. Geological Survey Water-Resources Investigations Report 89 – 4138.

    Google Scholar 

  • Ball, J. W. and Nordstrom, D. K.: 1992, “User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters,” U.S. Geological Survey Open-File Report 91–183, revised and reprinted.

    Google Scholar 

  • Ball, J. W., Nordstrom, D. K., and Jenne, E. A.: 1980, “Additional and revised thermochemical data and computer code for WATEQ2 - a computerized chemical model for trace and major element speciation and mineral equilibria of natural waters,” U.S Geological Survey Water-Resources Invetigations Report 78 - 116.

    Google Scholar 

  • Batley, G. E.: 1989, “Physicochemical separation methods for trace element speciation in aquatic samples,” In Trace Element Speciation: Analytical methods and problems, G.E. Batley, editor, CRC Press, Inc., Boca Raton, Florida, 43 – 76.

    Google Scholar 

  • Bertsch, P. A. and Anderson, M. A.: 1989, Anal Chem., 61, 535 – 539.

    Article  Google Scholar 

  • Broyd, T. W., Grant, M. M., and Cross, J. E.: 1985, “A report on intercomparison studies of computer programs which respectively model: (i) Radionuclide migration, (ii) Equilibrium chemistry of groundwater”EUR 10231 EN, CEC, Luxembourg.

    Google Scholar 

  • Buck, R. P.: 1979, “Crystalline and pressed powder solid membrane electrodes,” In Ion- Selective Electrode Methodology, A.K. Covington, editor, CRC Press, Inc., Boca Raton, Florida, 175 – 250.

    Google Scholar 

  • Butler, J. N.: 1964, Ionic Equilibrium: A mathematical approach, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Cox, J. D., Wagman, D. D., and Medvedev, V. A.: 1989, COD ATA key values for thermodynamics, Hemisphere Publishing Corporation, 271 pp.

    Google Scholar 

  • Driscoll, C. T.: 1984, Int. J. Environ. Anal. Chem., 16, 267 – 283.

    Article  Google Scholar 

  • Florence, T. M.: 1982, Talanta, 29, 345.

    Article  Google Scholar 

  • Florence, T. M.: 1989, “Electrochemical techniques for trace element speciation in natural waters,” In Trace Element Speciation: Analytical methods and problems, G.E. Batley, editor, CRC Press, Inc, Boca Raton, Florida, 77 – 116.

    Google Scholar 

  • Hart, B. T. and Jones, M. J.: 1984, “Measurement of the trace metal complexing capacity of Magela Creek waters,” In Complexation of Trace Metals in Natural Waters,. C.J.M. Kramer and J.C. Duinker, editors, The Hague: Martinus Nijhoff/Dr. W. Junk Publishers, 201 – 212.

    Google Scholar 

  • Haivie, C. E. and Weare, J. H.: 1980, Geochim. Cosmochim. Acta., 44, 981 – 997.

    Article  Google Scholar 

  • Holm, T. R. and Curtiss, C. D„ III: 1990, “Copper complexation by natural organic matter in ground water,” In Chemical Modeling in Aqueous Systems II, D.C. Melchior and R.L. Bassett, editors, American Chemical Society Symposium Series 416, Washington, D.C.:, 508 – 518.

    Google Scholar 

  • Kerfoot, H. B., Lewis, T. E., Hillman, D. C., and Faber, M. L.: 1987, National Surface Water Survey, Eastern Lake Survey (Phase II - Temporal Variability) Analytical Methods Manual EPA - 600/X-87/008

    Google Scholar 

  • Kushner, D. J.: 1993, WaterPollut. Res. J.Canada, , 28(1), 111.

    Google Scholar 

  • Lund, W.: 1986, “Electrochemical methods and their limitations for the determination of metal species in natural waters,” In The Importance of Chemical “Speciation” in Environmental Processes, M. Bernhard, editor, Springer-Verlag, Berlin 533 – 561.

    Google Scholar 

  • Macalady, D. L., Langmuir, D., Grundl, T., and Elzerman, A.: 1990, “Use of model-generated Fe3+ ion activities to compute Eh and ferric oxyhydroxide solubilities in anaerobic systems,” In Chemical Modeling in Aqueous Systems II, D.C. Melchior and R.L. Bassett, editors, American Chemical Society Symposium Series 416, Washington, D.C., 350 – 367.

    Chapter  Google Scholar 

  • McGrath, S. P., Sanders, J. R., Laurie, S. H., and Tancock, N. P.: 1986, Analyst (LondonK 111, 459 – 465.

    Article  Google Scholar 

  • Morris, J. C. and Stumm, W.: 1967, “Redox equilibria and measurements of potentials in the aquatic environment,” In Equilibrium Concepts in Natural Water Systems, W. Stumm, editor, American Chemical Society Symposium Series 67, Washington, D.C., 270 – 285.

    Chapter  Google Scholar 

  • Morrison, G. M. P.: 1989, “Trace element speciation and its relationship to bioavailability and toxicity in natural waters,” In Trace Element Speciation: Analytical methods and problems, G.E. Batley, editor, CRC Press, Inc., Boca Raton, Florida, 25 – 42.

    Google Scholar 

  • Nordstrom, D. K., Jenne, E. A., and Ball, J. W.: 1979, “Redox equilibria of iron in acid mine waters,” In Chemical Modeling in Aqueous Systems, E.A. Jenne, editor., American Chemical Society Symposium 93, Washington, D.C., 51 – 80.

    Chapter  Google Scholar 

  • Nordstrom, D. K., Plummer, L. N., Wigley, T. M. L., Wolery, T. J., Ball, J. W., Jenne, E. A., Bassett, R. L., Crerar, D. A., Florence, T. M., Fritz, B., Hoffman, M., Holdren, G. R., Jr., Lafon, G. M., Mattigod, S. V., McDuff, R. E., Morel, F., Reddy, M. M., Sposito, G., Thrailkill, J.: 1979, “Comparison of computerized chemical models for equilibrium calculations in aqueous systems,” In Chemical Modeling in Aqueous Systems, E.A. Jenne, editor, American Chemical Society Symposium Series 93, Washington, D.C., 857 – 892.

    Chapter  Google Scholar 

  • Noronha, C. J., and Pearson, F. J., Jr.: 1983, Geochemical models suitable for performance assessment of nuclear waste storage: Comparison of PHREEQE and EQ3/6, Intera Technical Report, ONWI-473.

    Google Scholar 

  • Parker, D. R., Norvell, W. A., and Chaney, R. L.: 1995, “GEOCHEM-PC - A Chemical speciation program for IBM and compatible personal computers,” In Chemical Equilibrium and Reactrion Models, R.H. Loeppert, A.P. Schwab, and S. Goldberg, editors, Soil Science Society of America Special Publication Number 42, 253 – 270.

    Google Scholar 

  • Parkhurst, D. L.: 1990, “Ion-association models and mean activity coefficients of various salts,” In Chemical Modeling of Aqueous Systems II, D.C. Melchior and R.L. Bassett, editors, American Chemical Society Symposium Series 416, Washington, D.C., 30 – 43.

    Chapter  Google Scholar 

  • Parkhurst, D.L., Thorstenson, D. C., and Plummer, L. N.: 1980, “PHREEQE - a computer program for geochemical calculations,” U.S. Geological Survey Water-Resources Investigations Report 80 – 96.

    Google Scholar 

  • Peden, M. E., Amankwah, S. A., Keller, B. J., Krug, E. C., and Peden, J. M.: 1989, Evaluation of aluminum speciation using synthetic and natural samples: Final report, Illinois State Water Survey, Champaign, Illinois, USEPA Cooperative Agreement CR813489–01.

    Google Scholar 

  • Pitzer, K. S.: 1992, “Ion interaction approach: Theory and data correlation,” In Activity Coefficients in Electrolyte Solutions, K.S. Pitzer, editor, CRC Press, Inc., Boca Raton, Florida, 75 – 154.

    Google Scholar 

  • Poulson, R. E., Powers, C. R., and Essington, M. E.: 1987, “Validation of inorganic chemical speciation for geochemical models,” Western Res. Inst. DOE/MC/11076 – 2459, DE88 011565.

    Google Scholar 

  • Ptacek, C. J.: 1992, Experimental determination of siderite solubility in high ionic-strength solutions, Ph.D. thesis, University of Waterloo, Waterloo, Canada, 331 pp.

    Google Scholar 

  • Reardon, E. J.: 1988, J. Phys. Chem., 92, 6426 – 6431.

    Article  Google Scholar 

  • Reardon, E. J.: 1989, J. Phys. Chem, 93, 4630 – 4636.

    Article  Google Scholar 

  • Reardon, E. J. and Beckie, R. D.: 1987, Geochim. Cosmochim. Acta, 51, 2355 – 2368.

    Article  Google Scholar 

  • Schecher, W. D. and Driscoll, C. T.: 1988, Water Resour. Res., 24(4), 533 – 540.

    Article  Google Scholar 

  • Sposito, G. and Mattigod, S. V.: 1980, GEOCHEM: A computer program for the calculation of chemical equilibria in soil solutions and other natural water systems, Kearney Foundation of Soil Science, University of California, Riverside, CA.

    Google Scholar 

  • Sposito, G., Bingham, F. T., Yadav, S. S„ and Inouye, C. A.: 1982, Soil Sci. Soc. Am. J., 46(1), 51 – 56.

    Article  Google Scholar 

  • Stipp, S. L.: 1990, Environ. Sci. Technol24 (5), 699 – 705.

    Article  Google Scholar 

  • Stipp, S. L. S., Parks, G. A., Nordstrom, D. K., and Leckie, J. O.: 1993, Geochim. Cosmochim. Acta, 57(12), 2699 – 2713.

    Article  Google Scholar 

  • Waite, T. D.: 1989, “Mathematical modeling of trace element speciation,” In Trace Element Speciation: Analytical methods and problems, G.E. Batley, editor, CRC Press, Inc., Boca Raton, Florida, 117 – 184.

    Google Scholar 

  • Wolery, T. J.: 1992, “EQ3NR, A computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user’s guide, and related documentation (Version 7.0),” Lawrence Livermore National Laboratory, UCRL-MA-110662 PT III.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nordstrom, D.K. (1996). Trace Metal Speciation in Natural Waters: Computational vs. Analytical. In: Clean Water: Factors that Influence Its Availability, Quality and Its Use. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0299-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0299-2_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6619-8

  • Online ISBN: 978-94-009-0299-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics