Skip to main content

State of the art in ICUS quantitation

  • Chapter
Cardiovascular Imaging

Summary

IntraCoronary UltraSound (ICUS) data are the basis of two-dimensional (2D) quantitative information and three-dimensional (3D) reconstruction. A method for semi-automatic 3D image quantification for volumetric study of series of echo slices has been developed. The semi-automatic contour detection method was tested in-vitro in tubular phantoms of known dimensions. Intra- and interobserver variability was evaluated in-vivo for area and volume measurements of diseased human coronary arteries.

High blood backscatter level at ICUS imaging frequencies appears to be a major limiting factor for automatic contour procedures and 3D reconstruction. Video-frame averaging methods have shown to be helpful for reducing intra- and interobserver variability of the manual lumen definition, but not sufficient to enhance the image for automatic contour detection.

New technologies to use the RadioFrequency (RF) ultrasonic signal for image improvement, although still in their early development stage, are looking promising. A RF processing technique based on correlation of a time sequence of RF echo traces can yield a high value at the wall region against a low value in the lumen region. With the RF correlation technique, the image can be improved drastically, thus facilitating application of fully automated image segmentation techniques. Furthermore, the RF processing methods may provide other quantitative parameters about functions of the vessel. These methods include:

  1. 1.

    Flow estimation. The de-correlation procedure of blood scattering signals is related to the velocity of blood particles traveling across the ultrasound beam. Quantifying this procedure may provide an estimation of 2D velocities distribution for the blood flow;

  2. 2.

    Intravascular elastography. Tissue with different elastic properties will reveal different strains to an applied stress. This is currently used for functional imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hodgson JMcB, Reddy KG, Suneja R, Nair RN, Lesnefsky EJ, Sheehan HM. Intracoronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 1993;21:35–44.

    Article  PubMed  CAS  Google Scholar 

  2. Losordo DW, Rosenfield K, Kaufman J, Pieczek A, Isner JM. Focal compensatory enlargement of human arteries in response to progressive atherosclerosis. In vivo documentation using intravascular ultrasound. Circulation 1994;89:2570–7.

    PubMed  CAS  Google Scholar 

  3. St-Goaur FG, Pinto FJ, Alderman EL et al. Intracoronary ultrasound in cardiac transplant recipients: in vivo evidence of “angiographically silent” intimal thickening. Circulation 1992;85:979–87.

    Google Scholar 

  4. Mintz GS, Potkin BN, Keren G et al. Intravascular ultrasound evaluation of the effect of rotational atherectomy in obstructive atherosclerotic coronary artery disease. Circulation 1992;86:1383–93.

    PubMed  CAS  Google Scholar 

  5. Nakamura S, Colombo A, Gaglione A et al. Intracoronary ultrasound observations during stent implantation. Circulation 1994;89:2026–34.

    PubMed  CAS  Google Scholar 

  6. Tenaglia AN, Buller CE, Kisslo KB, Stack RS, Davidson CJ. Mechanisms of balloon angioplasty and directional coronary atherectomy as assessed by intracoronary ultrasound. J Am Coll Cardiol 1992;20:685–91.

    Article  PubMed  CAS  Google Scholar 

  7. Tobis JM, Mallery JA, Gessert J et al. Intravascular ultrasound cross-sectional arterial imaging before and after balloon angioplasty in vitro. Circulation 1989;80:873–82.

    Article  PubMed  CAS  Google Scholar 

  8. Hausmann D, Friedrich G, Sudhir K et al. 3D intravascular ultrasound imaging with automated border detection using 2.9 F Catheters [abstract]. J Am Coll Cardiol 1994;23(Special Issue):174A.

    Article  Google Scholar 

  9. Li W, Bom N, van Egmond FC. Three-dimensional quantification of intravascular ultrasound images. J Vase Invest 1995;1:57–61.

    Google Scholar 

  10. Matar FA, Mintz GS, Douek P et al. Coronary artery lumen volume measurement using three-dimensional intravascular ultrasound: validation of a new technique. Cathet Cardiovasc Diagn 1994;32:214–20.

    Article  Google Scholar 

  11. Roelandt JRTC, Di Mario C, Pandian NG et al. Three-dimensional reconstruction of intracoronary ultrasound images. Rationale, approaches, problems, and directions. Circulation 1994:90:1044–55.

    PubMed  CAS  Google Scholar 

  12. Rosenfield K, Losordo DW, Ramaswamy K et al. Three-dimensional reconstruction of human coronary and peripheral arteries from images recorded during two-dimensional intravascular ultrasound examination. Circulation 1991;84:1938–56.

    PubMed  CAS  Google Scholar 

  13. Li W, Bouma CJ, Gussenhoven EJ et al. Computer-aided intravascular ultrasound diagnostics. In: Roelandt J, Gussenhoven EJ, Bom N, editors. Intravascular Ultrasound. Dordrecht: Kluwer Academic Publishers, 1993:79–90.

    Google Scholar 

  14. Gerbrands JJ, Hoek C, Reiber JHC, Lie SP, Simoons ML. Minimum cost contour detection in technetium-99m gated cardiac blood pool scintigrams. Comput Cardiol 1982:253–6.

    Google Scholar 

  15. Reiber JHC, Serruys PW, Kooijman CJ et al. Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 1985;71:280–8.

    Article  PubMed  CAS  Google Scholar 

  16. Bosch JG, Reiber JHC, van Burken G et al. Automated endocardial contour detection in short-axis 2-D echocardiograms: methodology and assessment of variability. Comput Cardiol 1988:137–40.

    Google Scholar 

  17. Li W, Bosch JG, Zhong Y et al. Semiautomatic frame-to-frame tracking of the luminal border from intravascular ultrasound. Comput Cardiol 1991:353–6.

    Google Scholar 

  18. Sonka M, Zhang X. Siebes M et al. Automated segmentation of coronary wall and plaque from intravascular ultrasound image sequences. Comput Cardiol 1994:281–4.

    Google Scholar 

  19. Di Mario C, The SHK, Madretsma S et al. Detection and characterization of vascular lesions by intravascular ultrasound: an in vitro study correlated with histology. J Am Soc Echocardiogr 1992;5:135–46.

    PubMed  Google Scholar 

  20. Li W, von Birgelen C, Di Mario C et al. Semi-automatic contour detection for volumetric quantification of intracoronary ultrasound. Comput Cardiol 1994:277–80.

    Google Scholar 

  21. Von Birgelen C, Di Mario C, Li W et al. Volumetric quantification in intracoronary ultrasound: validation of a new automatic contour detection method with integrated user interaction [abstract]. Circulation 1994;90(4 pt 2):I-550.

    Google Scholar 

  22. Li W, Gussenhoven EJ, Zhong Y et al. Temporal averaging for quantification of lumen dimensions in intravascular ultrasound images. Ultrasound Med Biol 1994;20:117–22.

    Article  PubMed  CAS  Google Scholar 

  23. Li W, van der Steen AFW, LancJe CT, Honkoop J, Gussenhoven EJ, Bom N. Temporal correlation of blood scattering signals in vivo on radio frequency intravascular ultrasound. Ultra-sound Med Biol. In press.

    Google Scholar 

  24. Ophir J, Cespedes I, Ponnekanti H, Yardi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991;13:111–34.

    Article  PubMed  CAS  Google Scholar 

  25. Cespedes I, de Korte CL, van der Steen A.F.W., Lancée CT. Intravascular ultrasound system for characterization and imaging of atherosclerotic plaque hardness [abstract]. In: Fourteenth annual Houston conference on biomedical engineering research, Houston: S.N, 1996; 147.

    Google Scholar 

  26. Cespedes I, de Korte CL, van der Steen AFW, Lancée CT. Imaging atherosclerotic plaque hardness using intravescular ultrasound [abstract]. Ultrason Imaging. In press.

    Google Scholar 

  27. De Korte CL, Cespedes I, van der Steen AFW, Lancée CT. Local compressibility assessment using 20 kHz sound excitation [abstract]. Ultrason Imaging. In press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wenguang, L. et al. (1996). State of the art in ICUS quantitation. In: Reiber, J.H.C., van der Wall, E.E. (eds) Cardiovascular Imaging. Developments in Cardiovascular Medicine, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0291-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0291-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6616-7

  • Online ISBN: 978-94-009-0291-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics