Advertisement

Pseudomorphic HEMTs: Device Physics and Materials Layer Design

  • Thomas Grave
Chapter
Part of the NATO ASI Series book series (ASHT, volume 14)

Abstract

In this paper, pseudomorphic HEMTs on GaAs substrate and both lattice-matched and pseudomorphic HEMTs on InP substrate are treated. First, the basic requirements are considered that must be met by any HEMT epitaxial layer sequence. They are compared to the fundamental possibilities for layer growth that exist within the system of III-V compound semiconductors, and the five most common HEMT layer structures are discussed. An elementary introduction into HEMT device physics is given with special emphasis on the influence of specific layer schemes on charge control. The small-signal equivalent network is used to point out differences between intrinsic and extrinsic device due to the presence of parasitics. Guidelines for HEMT design with respect to analog low-noise and power applications are given. Most optimization considerations are illustrated by means of GaAs-based HEMT examples. Properties of InP-based devices are treated more concisely. Overviews over the state-of-the-art concerning high-frequency, low-noise and power performance are presented for both types of HEMTs, and a selection of future concepts for further improvements is outlined.

Keywords

Quantum Well GaAs Substrate Indium Content High Electron Mobility Transistor IEEE Electron Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mimura, T., Hiyamizu, S., Fujii, T., and Nanbu, K. (1980) A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions, Jap. J. Appl. Phys. 19, L225–L227ADSCrossRefGoogle Scholar
  2. 2.
    Delagebeaudeuf, D., Delescluse, P., Etienne, P., Laviron, M., Chaplart, J., and Linh, N.T. (1980) Two-dimensional electron gas MESFET structure, Electron. Lett. 16, 667–668ADSCrossRefGoogle Scholar
  3. 3.
    Dingle, R., Stormer, H.L., Gossard, A.C., and Wiegmann, W. (1978) Electron mobilities in modulation-doped semiconductor heterojunction superlattices, Appl. Phys. Lett. 33, 665–667ADSCrossRefGoogle Scholar
  4. 4.
    Stormer, H.L., Dingle, R., Gossard, A.C., Wiegmann, W., and Sturge, M.D. (1979) Two-dimensional electron gas at a semiconductor-semiconductor interface, Solid-State Comm 29, 705–709ADSCrossRefGoogle Scholar
  5. 5.
    Rosenberg, J.J., Benlamri, M., Kirchner, P.D., Woodall, J.M., and Pettit, G.D. (1985) An In0.15Ga0.85As/GaAs pseudomorphic single quantum well HEMT, IEEE Electron Device Lett. EDL-6, 491–493ADSCrossRefGoogle Scholar
  6. 6.
    Ketterson, A., Moloney, M., Masselink, W.T., Peng, C.K., Klem, J., Fischer, R., Kopp, W., and Morkoc, H. (1985) High transconductance InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors, IEEE Electron Device Lett. EDL-6, 628–630Google Scholar
  7. 7.
    Ketterson, A.A., Masselink, W.T., Gedymin, J.S., Klem, J., Peng, C.-K., Kopp, W.F., Morkoc, H., and Gleason, K.R. (1986) Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped fieldeffect transistors, IEEE Trans. Electron Devices33 564–571ADSCrossRefGoogle Scholar
  8. 8.
    Henderson, T., Aksun, M.I., Peng, C.K., Morkoc, H.,Chao, P.C., Smith, P.M., Duh, K,-H.G., and Lester, L.F. (1986) Microwave performance of a quarter-micrometer gate low-noise pseudomorphic InGaAs/AlGaAs modulation-doped field effect transistor, IEEE Electron Device Lett. EDL-7, 649–651ADSCrossRefGoogle Scholar
  9. 9.
    Hikosaka, K., Hirachi, Y., Mimura, T., and Abe, M. (1985) A microwave power double-heterojunction high electron mobility transitor, IEEE Electron Device LettEDL-6, 341–343ADSCrossRefGoogle Scholar
  10. 10.
    Smith, P.M., Chao, P.C., Lester, L.F., Smith, R.P., Lee, B.R., Ferguson, D.W., Jabra, A.A., Bailingall, J.M., and Duh, K.H.G. (1988) InGaAs pseudomorphic HEMTs for millimeter wave power applications, IEEEMTT-S Tech. Digest, 927–930Google Scholar
  11. 11.
    Smith, P.M., Kao, M.Y., Ho, P., Chao, P.C., Duh, K.H.G., Jabra, A.A., Smith, R.P., and Bailingall, J.M. (1989) A 0.15 μm gate-length pseudomorphic HEMT, IEEEMTT-S Tech. Digest, 983–986Google Scholar
  12. 12.
    Pearsall, T.P., Hendel, R., O’Connor, P., Alavi, K., and Cho, A.Y. (1983) Selectively-doped Al0.48In0.52As/Ga0.47In0.53 As heterostructure field effect transistor, IEEE Electron Device Lett EDL-4, 5–8CrossRefGoogle Scholar
  13. 13.
    Hirose, K., Ohata, K., Mizutani, T., Itoh, T., and Ogawa, M. (1985) 700 mS/mm 2DEGFETs fabricated from high mobility MBE-grown n-AHnAs/GalnAs heterostractures, Gallium Arsenide and Related Compounds 1985, Inst. Phys. Conf. Ser. No. 79, 529–534Google Scholar
  14. 14.
    Peng, C.K., Aksun, M.I., Ketterson, A.A., Morkoc, H., and Gleason, K.R. (1987) Microwave performance of InAlAs/InGaAs/InP MODFETs, IEEE Electron Device Lett EDL-8,24–26ADSCrossRefGoogle Scholar
  15. 15.
    Kuo, J.M., Lalvic, B., and Chang, T.Y. (1986) New pseudomorphic MODFETs utilizing Ga jy_u In 53+MAs/Al 4g+liIn 52-w^s hetero structures, IEDM Tech. Digest, 460–463 345 Google Scholar
  16. 16.
    Mishra, U.K., Brown, A.S., and Rosenbaum, S.E. (1988) DC and RF performance of 0.1 jim gate length Al 4 8In 52As-Ga 38In 6 2 A s pseudomorphic HEMTs, IEDMTech. Digest, 180-183Google Scholar
  17. 17.
    Pollak, F.H. (1993) Energy gaps of AlGaAs, In S. Adachi (ed), Properties of Aluminium Gallium Arsenide, INSPEC, the Institution of Electrical Engineers, London, p. 54Google Scholar
  18. 18.
    Matthews, J.W., and Blakeslee, A.E. (1974) Defects in epitaxial multilayers, J. Crystal Growth 27,118– 125ADSGoogle Scholar
  19. 19.
    Andersson, T.G., Chen, Z.G., Kulakovskii, V.D., Uddin, A., and Vallin, J.T. (1987) Variation of the critical layer thickness with In content in strained In^Ga^ ^As-GaAs quantum wells grown by molecular beam epitaxy, Appl. Phys. Lett. 51,752–754ADSCrossRefGoogle Scholar
  20. 20.
    People, R., and Bean, J.C. (1985) Calculation of critical layer thickness versus lattice mismatch for GexSi1-xSi strained-layer heterostructures, Appl. Phys. Lett. 47, 322–324ADSCrossRefGoogle Scholar
  21. 21.
    Taguchi, T., Takeuchi, Y., Matugatani, K., Ueno, Y., Hattori, T., Sugiyama, Y., and Tacano, M. (1993) Critical layer thickness of InQ go^aO 2QAs/InQ 52^0 43As heterostructures, J. Crystal Growth 134, 147–150ADSCrossRefGoogle Scholar
  22. 22.
    Ruch, J.G., and Kino, G.S. (1968) Transport properties of GaAs, Phys. Rev. 174,921–931ADSCrossRefGoogle Scholar
  23. 23.
    Braslau, N., and Hauge, P.S. (1970) Microwave measurement of the velocity-field characteristic of GaAs, IEEE Trans. Electron Devices ED-17, 616–622CrossRefGoogle Scholar
  24. 24.
    Houston, P.A., and Evans, A.G.R. (1977) Electron drift velocity in n-GaAs at high electric fields, Solid-State Electr 20, 197–204ADSCrossRefGoogle Scholar
  25. 25.
    Littlejohn, M.A., Kim, K.W., and Tian, H. (1993) High-field transport in InGaAs and related heterostructures, In P. Bhattacharya (ed), Properties of Lattice-Matched and Strained Indium Gallium Arsenide, INSPEC, the Institution of Electrical Engineers, London, p. 107–116Google Scholar
  26. 26.
    Brennan, K., and Hess, K. (1984) High field transport in GaAs, InP XANDXInAs, Solid-State Electr 27, 347–357ADSCrossRefGoogle Scholar
  27. 27.
    Liu, C.T., Lin, S.Y., Tsui, D.C., Lee, H., and Ackley, D. (1988) Cyclotron resonance measurements of the electron effective mass in strained AlGaAs/InGaAs/GaAs pseudomorphic structures, Appl. Phys. Lett.53, 2510–2512ADSCrossRefGoogle Scholar
  28. 28.
    Nguyen, L.D., Larson, L.E., and Mishra, U.K. (1992) Ultra-high-speed modulation-doped field-effect transistors: a tutorial review, Proc. of the IEEE 80,494–518ADSCrossRefGoogle Scholar
  29. 29.
    Bhattacharya, P.K. (1993) Low- and high-field transport in pseudomorphic InGaAs based heterostructures, In P. Bhattacharya (ed), Properties of Lattice-Matched and Strained Indium Gallium Arsenide, INSPEC, the Institution of Electrical Engineers, London, p. 117–126Google Scholar
  30. 30.
    Schubert, E.F. (1990) Delta doping of III-V semiconductors: fundamentals and device applications, J. Vac. Sci. Technol.A8(3), 2980–2996Google Scholar
  31. 31.
    Ando, Y., and Itoh, T. (1988) Analysis of charge control in pseudomorphic two-dimensional electron gas field-effect transistors, IEEE Trans. Electron Devices 35, 2295–2301ADSCrossRefGoogle Scholar
  32. 32.
    Chand, N., Henderson, T., Klem, J., Masselink, W.T., Fischer, R., Chang, Y.-C., and Morkoc, H. (1984) comprehensive analysis of Si-doped AlxGa1-xAs (x= 0 to 1): theory and experiments, Phys. Rev. B 30, 4481–4492ADSCrossRefGoogle Scholar
  33. 33.
    Schubert, E.F., and Ploog, K. (1984) Shallow and deep donors in direct-gap n-type AlxGa1-xAs:Si grown by molecular-beam epitaxy, Phys. Rev. B 30, 7021–7029ADSCrossRefGoogle Scholar
  34. 34.
    Foisy, M.C., Tasker, P.J., Hughes, B., and Eastman, L.F. (1988) The role of inefficient charge modulation in limiting the current-gain cutoff frequency of the MODFET, IEEE Trans. Electron Devices 35, 871–878ADSCrossRefGoogle Scholar
  35. 35.
    Das, M.B. (1991) HEMT device physics and models, In F. Ali and A. Gupta (eds), HEMTs and HBTs: Devices, Fabrication, and Circuits, Artech House, Boston, London, pp. 11–75Google Scholar
  36. 36.
    Wolf, P. (1970) Microwave properties of Schottky-barrier field effect transistors, IBMJ. Res. Dev. 14, 125–141CrossRefGoogle Scholar
  37. 37.
    Das, M.B. (1985) A high aspect ratio design approach to millimeter-wave HEMT structures, IEEE Trans. Electron Devices ED-32, 11–17ADSCrossRefGoogle Scholar
  38. 38.
    Wasserstrom, E., and McKenna, J. (1970) The potential due to a charged metallic strip on a semiconductor surface, Bell Syst. Tech. J. 49, 853–877Google Scholar
  39. 39.
    Anholt, R-. (1991) Dependence of GaAs MESFET fringe capacitances on fabrication technologies, Solid-State Electr 34, 515–520ADSCrossRefGoogle Scholar
  40. 40.
    Moll, N., Hueschen, M.R., and Fischer-Colbrie, A.(1988) Pulse-doped AlGaAs/InGaAs pseudomorphic MODFETs, IEEE Trans. Electron Devices35, 879–886ADSCrossRefGoogle Scholar
  41. 41.
    Greiling, P.T., and Nguyen, L. 1991 Ultrahigh-frequency InP-based HEMTs for millimeter wave pplications, SPIE Vol. 1475, 34–41ADSCrossRefGoogle Scholar
  42. 42.
    Lester, L.F., Smith, P.M., Ho, P., Chao, P.C., Tiberio, R.C., Duh, K.H.G., and Wolf, E.D. (1988) 0.15 pun gate-length double recess pseudomorphic HEMT with fmax of 350 GHz, IEDM Tech. Digest, 172–175Google Scholar
  43. 43.
    Nguyen, L.D., Tasker, PJv, Radulescu, D.C., and Eastman, L.F. (1989) Characterization of ultra-highspeed pseudomorphic AlGaAs/InGaAs (on GaAs) MODFETs, IEEE Trans. Electron Devices 36, 2243– 2248ADSCrossRefGoogle Scholar
  44. 44.
    Chao, P.C., Shur, M.S., Tiberio, R.C., Duh, K.H.G., Smith, P.M., Ballingall, J.M., Ho, P., and Jabra, A.A.(1989) DC and microwave characteristics of sub-O.l-pm gate-length planar-doped pseudomorphic HEMTs, IEEE Trans. Electron Devices 36,461–473ADSCrossRefGoogle Scholar
  45. 45.
    Tan, K.L., Dia, R.M., Streit, D C., Lin, T., Trinh, T.Q., Han, A.C., Liu, P.H., Chow, P.-M.D., and Yen, H.C. 1990 94-GHz 0.1-jttm T-gate low-noise pseudomorphic InGaAs HEMTs, IEEE Electron Device Lett 11, 585–587ADSCrossRefGoogle Scholar
  46. 46.
    Nguyen, L.D., JeHoian, L.M., Thompson, M., and Lui, M. (1990) Fabrication of a 80 nm self-aligned T-gate AlInAs/GalnAs HEMT, IEDM Tech. Digest, 499–502Google Scholar
  47. 47.
    Chao, P.C., Tessmer, A J., Duh, K.-H.G., Ho, P., Kao, M.-Y., Smith, P.M., Ballingall, J.M., Liu, S.- MJ., and Jabra, A.A. (1990) W-band low-noise InAlAs/InGaAs lattice-matched HEMTs, IEEE Electron Device Lett 11, 59–62ADSCrossRefGoogle Scholar
  48. 48.
    Ho, P., Kao, M.Y., Chao, P.C., Duh, K.H.G., Ballingall, J.M., Allen, S.T., Tessmer, A.J., and Smith, P.M. (1991) Extremely high gain 0.15 |nm gate-length InAlAs/InGaAs/InP HEMTs, Electron. Lett. 27, 325–326ADSCrossRefGoogle Scholar
  49. 49.
    Mishra, U.K., Brown, A.S., Dekney, M.J., Greiling, P.T., and Krumm, C.F. (1989) The AlInAs-GalnAs HEMT for microwave and millimeter-wave applications, IEEE Trans. Microw. Theo. Tech. 37, 1279– 1285ADSCrossRefGoogle Scholar
  50. 50.
    Nguyen, L.D., Brown, A.S., Thompson, M.A., Jelloian, L.M., Larson, L.E., and Matloubian, M. (1992) 650-Angstrom self-aligned-gate pseudomorphic Al0.48In0.52As/Ga0.20In0.80 As high electron obility transistors, IEEE Electron Device Lett 13,143–145ADSCrossRefGoogle Scholar
  51. 51.
    Nguyen, L.D., Brown, A.S., Thompson, M.A., and Jelloian, L.M. (1992) 50-nm self-aligned-gate seudomorphic AlInAs/GalnAs high electron mobility transistors, IEEE Trans. Electron Devices 39, 2007–2014ADSCrossRefGoogle Scholar
  52. 52.
    Wojtowicz, M., Lai, R., Streit, D.C., Ng, G.I., Block, T.R., Tan, K.L., Liu, P.H., Freudenthal, A.K., and Dia, M.R. (1994) 0.10 \m\graded InGaAs channel InP HEMT with 305 GHz fT and 340 GHz fmaX> IEEE Electron Device Lett 15,477–479ADSCrossRefGoogle Scholar
  53. 53.
    Fukui, H. (1979) Optimal noise figure of microwave GaAs MESFETs, IEEE Trans. Electron Devices ED-26,1032–1037ADSCrossRefGoogle Scholar
  54. 54.
    Deutschmann, R., Fischer, C., Sala, S., and Selberherr, S. (1993) Evaluation of effective device parameters by comparison of measured and simulated C-V characteristics for conventional and pseudomorphic HEMTs, In S. Selberherr, H. Stippel and E. Strasser (eds), Simulation of Semiconductor Devices and Processes Vol. 5, Springer-Verlag, Wien, pp. 461–464CrossRefGoogle Scholar
  55. 55.
    Duh, K.H.G., Chao, P.C., Ho, P., Tessmer, A., Liu, S.M.J., Kao, M.Y., Smith, P.M., and Ballingall, J.M. (1990) W-band InGaAs HEMT low noise Amplifiers, IEEEMTT-S Tech. Digest, 595–598Google Scholar
  56. 56.
    Katoh, T., Yoshida, N., Minami, H., Kashiwa, T., and Orisaka, S. (1993) A 60 GHz-band ultra low noise planar-doped HEMT, IEEEMTT-S Tech. Digest, 337–340Google Scholar
  57. 57.
    Takikawa, M., and Joshin, K. (1993) Pseudomorphic n-InGaP/InGaAs/GaAs high electron mobility transistors for low-noise amplifiers, IEEE Electron Device Lett 14, 406–408ADSCrossRefGoogle Scholar
  58. 58.
    Fujita, S., Noda, T., Wagai, A., Ashizawa, Y., and Hosoi, S. (1993) Extremely low noise InGaAs/InAlAs HEMT grown by MOCVD, Electron. Lett. 29, 1557–1558CrossRefGoogle Scholar
  59. 59.
    Tan, K.L., Streit, D.C., Chow, P.D., Dia, R.M., Han, A.C., Liu, P.H., Garske, D., and Lai, R. (1991) 140 GHz 0.1 μm gate-length pseudomorphic In0.52Al0.48As/In0.60Ga0.40As/InP HEMT, IEDM Tech. Digest, 239–242Google Scholar
  60. 60.
    Hwang, T., Chye, P., and Gregory, P. (1993) Super low noise pseudomorphic InGaAs channel InP HEMTs, Electron. Lett. 29,10–11ADSCrossRefGoogle Scholar
  61. 61.
    Huang, J.C., Boulais, W., Platzker, A., Kazior, T., Aucoin, L., Shanfield, S., Bertrand, A., Vafiades, M., and Niedzwiecki, M. (1993) The effect of channel dimensions on the millimeter-wave power performance of a pseudomorphic HEMT, GaAs IC Symp. Tech. Digest, 177–180Google Scholar
  62. 62.
    Huang, J.C., Jackson, G.S., Shanfield, S., Platzker, A., Saledas, P.K., and Weichert, C. (1993) An AlGaAs/InGaAs pseudomorphic high electron mobility transistor with improved breakdown voltage for X- and Ku-band power applications, IEEE Trans. Microw. Theo. Tech. 41, 752–759ADSCrossRefGoogle Scholar
  63. 63.
    Kao, M.-Y., Fu, S.-T., Ho, P., Smith, P.M., Chao, P.C., Nordheden, K.J., and Wang, S. (1992) Very high voltage AlGaAs/InGaAs pseudomorphic power HEMTs, IEDM Tech. Digest, 319-321Google Scholar
  64. 64.
    Huang, J.C., Jackson, G., Shanfield, S., Hoke, W., Lyman, P., Atwood, D., Saledas, P., Schindler, M., Tajima, Y., Platzker, A., Masse, D., and Statz, H. (1991) An AlGaAs/InGaAs pseudomorphic high electron mobility transistor (PHEMT) for X- and Ku-band power applications, IEEEMTT-S Tech. Digest, 713–716Google Scholar
  65. 65.
    Kim, B., Matyi, R.J., Wurtele, M., Bradshaw, K., Khatibzadeh, M.A., and Tserng, H.Q. (1989) Millimeter-wave power operation of an AlGaAs/InGaAs/GaAs quantum well MISFET, IEEE Trans. Electron Devices 36, 2236–2242ADSCrossRefGoogle Scholar
  66. 66.
    Zhou, G.-G., Chan, K.T., Hughes, B., Mierzwinski, M., and Kondo, H. (1989) A pseudomorphic MODFET structure with excellent linear power performance at mm-wave range, IEDM Tech. Digest, 109–112Google Scholar
  67. 67.
    Huang, J.C., Saledas, P., Wendler, J., Platzker, A., Boulais, W., Shanfield, S., Hoke, W., Lyman, P., Aucoin, L., Miquelarena, A., Bedard, C., and Atwood, D.(1993)A double-recessed Al0.24GaAs/In0.16GaAs pseudomorphic HEMT for Ka- and Q-band power applications, IEEE Electron Device Lett 14, 456–458ADSCrossRefGoogle Scholar
  68. 68.
    Smith, P.M., Ferguson, D.W., Kopp, W.F., Chao, P.C., Hu, W., Ho, P., and J.M. Ballingall (1991) A high power, high efficiency millimeter-wave pseudomorphic HEMT, IEEEMTT-S Tech. Digest, 717- 720Google Scholar
  69. 69.
    Saunier, P., and Tserng, H.Q. (1989) AlGaAs/InGaAs heterostructures with doped channels for discrete devices and monolithic amplifiers, IEEE Trans. Electron Devices 36, 2231–2235ADSCrossRefGoogle Scholar
  70. 70.
    Smith, P.M., Chao, P.C., Ballingall, J.M., and Swanson, A.W. (1990) Microwave and mm-wave power amplification using pseudomorphic HEMTs, Microwave J May 1990, 71–86ADSGoogle Scholar
  71. 71.
    Lai, R., Wojtowicz, M., Chen, C.H., Biedenbender, M., Yen, H.C., Streit, D.C., Tan, K.L., and Liu, P.H. (1993) High-power 0.15-|nm V-band pseudomorphic InGaAs-AlGaAs-GaAs HEMT, IEEE Microw. Guided Wave Lett. 3, 363–365CrossRefGoogle Scholar
  72. 72.
    Streit, D.C., Tan, K.L., Dia, R.M., Liu, J.K., Han, A.C., Velebir, J.R., Wang, S.K., Trinh, T.Q., Chow, P.-M.D., Liu, P.H., and Yen, H.C. (1991) High-gain W-band pseudomorphic InGaAs power HEMTs, IEEE Electron Device Lett 12, 149–150ADSCrossRefGoogle Scholar
  73. 73.
    Matloubian, M., Nguyen, L.D., Brown, A.S., Larson, L.E., Melendes, M.A., and Thompson, M.A. (1991) High power and high efficiency AlInAs/GalnAs on InP HEMTs, IEEEMTT-S Tech. Digest, 721–724Google Scholar
  74. 74.
    Matloubian, M., Brown, A.S., Nguyen, L.D., Melendes, M.A., Larson, L.E., Delaney, M.J., Thompson, M.A., Rhodes, R.A., and Pence, J.E. (1993) 20-GHz high-efficiency AlInAs-GalnAs on InP power HEMT, IEEE Microw. Guided Wave Lett. 3,142–144ADSCrossRefGoogle Scholar
  75. 75.
    Matloubian, M., Brown, A.S., Nguyen, L.D., Melendes, M.A., Larson, L.E., Delaney, M.J., Pence, J.E., Rhodes, R.A., Thompson, M.A., and Henige, J.A. (1993) High-power V-band AlInAs/GalnAs on InP HEMTs, IEEE Electron Device Lett 14,188–189ADSCrossRefGoogle Scholar
  76. 76.
    Wang, G.-W., Chen, Y.-K., Schaff, W.J., and Eastman, L.F. (1988) A 0.1-μm gate Al0.5In0.5As/Ga0.5In0.5AS MODFET fabricated on GaAs substrates, IEEE Trans. Electron Devices 35, 818–23ADSCrossRefGoogle Scholar
  77. 77.
    Masato, H., Matsuno, T., and Inoue, K. (1991) InQ 5GaQ ^As/InAlAs modulation-doped field effect transistors on GaAs substrates grown by low-temperature molecular beam epitaxy, Jap. J. Appl. Phys. 30, 3850–3852ADSCrossRefGoogle Scholar
  78. 78.
    Bachem, K.H., Pletschen, W., Winkler, K., Fleissner, J., Hoffmann, C., and Tasker, P.J. (1993) AlGalnP/GalnAs/GaAs-MODFETs with carbon doped p+-GaAs gate structure, a novel device concept, its implementation and device properties, Proc. Int. Symp. GaAs and Related Compounds, Inst. Phys. Conf. Ser. No. 136, 35–40Google Scholar
  79. 79.
    Yang, D., Chen, Y.C., Brock, T., and Bhattacharya, K. (1992) DC and microwave performance of a 0.1-μm gate InAs/In0.52Al0.48As MODFET, IEEE Electron Device Lett 13, 350–352ADSCrossRefGoogle Scholar
  80. 80.
    Bolognesi, C.R., Caine, E.J., and Kroemer, H. (1994) Improved charge control and frequency performance in InAs/AlSb-based heterostructure field-effect transistors, IEEE Electron Device Lett 15, 16–18ADSCrossRefGoogle Scholar
  81. 81.
    Aina, O., Burgess, M., Mattingly, M., Meerschaert, A., O’Connor, J.M., Tong, M., Ketterson, A., and Adesida, I. (1992) A 1.45-W/mm, 30-GHz InP-channel power HEMT, IEEE Electron Device Lett 13, 300–302ADSCrossRefGoogle Scholar
  82. 82.
    Jelloian, L.M., Matloubian, M., Liu, T., Lui, M., and Thompson, M.A. (1994) InP-based HEMTs with AI0.48In0.52AsxP1-xSchottky layers, IEEE Electron Device Lett 15, 172–174ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Thomas Grave
    • 1
  1. 1.Corporate Research and DevelopmentSiemens AGMunichGermany

Personalised recommendations