Using Gaseous Sources in Molecular Beam Epitaxy

  • C. W. Tu
Chapter
Part of the NATO ASI Series book series (ASHT, volume 14)

Abstract

Using gaseous sources in molecular beam epitaxy (MBE) extends the versatility of solid-source MBE. We first describe the use of gaseous group V hydrides, which makes the growth of phosphides possible (before the very recent development of valved crackers). New issues in growth of phosphides arise, however; for example, As/P exchange at arsenide/phosphide interfaces and controlling the group V composition in a mixed As+P alloy. Then we discuss the use of gaseous organometallic group IE sources in selective-area epitaxy, either by laser irradiation or on patterned substrates. Finally the use of gaseous dopant sources are described, in particular, carbon doping with halomethanes.

Keywords

Molecular Beam Epitaxy Incorporation Rate Multiple Quantum Well Heterojunction Bipolar Transistor RHEED Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.J. Davies, P.J. Skevinton, E.G. Scott, C.L. French, and J.S. Foord, J. Cryst. Growth 107, 999 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    For a review of the early development of MBE, see A.Y. Cho and J.R. Arthur, Prog. Solid-State Chem. 10, 157 (1975).CrossRefGoogle Scholar
  3. 3.
    B.R. Pamplin, ed., Molecular Beam Epitaxy, Pergamon Press, Oxford, 1980.Google Scholar
  4. 4.
    K. Ploog, ed., Molecular Beam Epitaxy of III-V Compounds: A Comprehensive Bibliography, 1958–1983, Springer-Verlag, Berlin, 1984.Google Scholar
  5. 5.
    L.L. Chang and K. Ploog, eds., Molecular Beam Epitaxy and Heterostructures, Nijhoff, Dordrecht, 1985.Google Scholar
  6. 6.
    E.H.C. Parker, ed., The Technology and Physics of Molecular Beam Epitaxy, Plenum Press, New York, 1985.Google Scholar
  7. 7.
    M.A. Herman and H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status, Springer-Verlag, Berlin, 1989.Google Scholar
  8. 8.
    M.B. Panish and H. Temkin, Gas-Source Molecular Beam Epitaxy, Springer-Verlag, Berlin, 1993.Google Scholar
  9. 9.
    J.Y. Tsao, Materials Fundamentals of Moleculr Beam Epitaxy, Academic Press, Boston, 1993.Google Scholar
  10. 10.
    W.T. Tsang, J. Cryst. Growth 81, 261 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    M.B. Panish, J. Electrochem. Soc. 127, 2729 (1980).CrossRefGoogle Scholar
  12. 12.
    A.R. Calawa, Appl. Phys. Lett. 38, 701 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    G.W. Wicks, M.W. Koch, J.A. Varriano, F.G. Johnson, C.R. Wie, H.M. Kim, and P. Colombo, Appl. Phys. Lett. 59, 342 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    J.N. Baillargeon, A.Y. Cho, R.J. Fischer, P.J. Pearah, and K.Y. Cheng, J. Vac. Sci. Technol. B 12, 1106 (1994).CrossRefGoogle Scholar
  15. 15.
    E. Veuhoff, W. Pletschen, P. Balk, and H. Luth, J. Cryst. Growth 55, 30 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    W.T. Tsang, Appl. Phys. Lett. 45, 1234 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    H.Q. Hou and C.W. Tu, Appl. Phys. Lett. 60, 381 (1992).Google Scholar
  18. 18.
    T.P. Chin, B.W. Liang, H.Q. Hou, M.C. Ho, C.E. Chang, and C.W. Tu, Appl. Phys. Lett. 58, 254 (1991).ADSCrossRefGoogle Scholar
  19. 19.
    H. Rothfritz, G. Tränkle, R. Müller, F. Herrmann, and G. Weiman, J. Cryst. Growth 120, 130 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    M. Lambert, A. Perales, R. Vergnaud, and C. Stark, J. Cryst. Growth 105, 97 (1990).ADSCrossRefGoogle Scholar
  21. 21.
    M. E. Sherwin, F. L. Terry, Jr., G. O. Munns, J. S. Herman, E. G. Woelk, and G. I. Haddad, J. Electron. Mater. 21, 269 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    A. Antoline, P. J. Bradley, C. Cacciatore, D. Campi, L. Gastaldi, F. Genova, M. Iori, C. Lamberti, C. Papuzza, and C. Rigo, J. Electron. Mater. 21, 233 (1992).ADSCrossRefGoogle Scholar
  23. 23.
    T. Y. Wang, E.H. Reihlen, H. R. Jen, and G. B. Stringfellow, J. Appl. Phys. 66, 5376 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    A. M. Moy, A. C. Chen, S. L. Jackson, X. Liu, K. Y. Cheng, G. E. Stillman and S. G. Bishop, J. Vac. Sci. Technol. Bll, 826 (1993).Google Scholar
  25. 25.
    K. Mahalingam, Y. Nakamura, N. Otsuka, H. Y. Lee, M. J. Hafich, and G. Y. Robinson, J. Electron. Mater. 21, 129 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    N. Kobayashi, Y. Kobayashi, J. Cryst. Growth 124, 525 (1992).ADSCrossRefGoogle Scholar
  27. 27.
    R. Averbeck, H. Riechert, H. Schlotterer, and G. Wiemann, Appl. Phys. Lett. 59, 1732 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    T. Anan, S. Sugou, K. Nishi, and T. Ichihashi, Appl Phys. Lett., 63, 1049 (1993).ADSCrossRefGoogle Scholar
  29. 29.
    G. J. Shiau, C. P. Chao, P. E. Burrows and S. R. Forrest, J. Appl Phys. 77, 201 (1995).ADSCrossRefGoogle Scholar
  30. 30.
    C. H. Yan and C. W. Tu, J. Vac. Sci. Technol. B (1996).Google Scholar
  31. 31.
    S. Nagao, M. Takashima, Y. Inoue, M. Katoh and H. Gotoh, J. Cryst. Growth 111, 521 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    Y. Nakamura, K. Mahalingam, N. Otsuka, H. Y. Lee, M. J. Hafich. G. Y. Robinson, J. Vac. Sci. Technol. B9, 2445 (1991).Google Scholar
  33. 33.
    T. Anan, S. Sugou, N. Kenichi, and I. Toshinari, Appl. Phys. Lett. 63, 1047 (1993).ADSCrossRefGoogle Scholar
  34. 34.
    C.H. Yan and C.W. Tu, Inst. Phys. Conf. Ser. 141, 161 (1995).Google Scholar
  35. 35.
    H.Q. Hou, A.N. Cheng, H.H. Wieder, W.S.C. Chang, and C.W. Tu, Appl. Phys. Lett. 63, 1833 (1993).ADSCrossRefGoogle Scholar
  36. 36.
    M. Yamamoto, N. Yamamoto, and J. Nakano, IEEE J. Quantum Electronics QE-30, 554 (1994).ADSCrossRefGoogle Scholar
  37. 37.
    T. Fukushima, A. Kasukawa, M. Iwase, T. Namegaya, et al., IEEE Photonics Technol. Lett. 5, 117 (1993).ADSCrossRefGoogle Scholar
  38. 38.
    H. Sugiura, M. Mitsuhara, H. Oohashi, T. Hirono, et al., J. Crystal Growth 147, 1 (1995).ADSCrossRefGoogle Scholar
  39. 39.
    H.Q. Hou, C.W. Tu, and S.N.G. Chu, Appl. Phys. Lett. 58, 2954 (1991).ADSCrossRefGoogle Scholar
  40. 40.
    M.K. Chin, P.K.L. Yu, and W.S.C. Chang, IEEE J. Quantum Electronics QE-27, 696 (1991).ADSCrossRefGoogle Scholar
  41. 41.
    X.B. Mei, K.K. Loi, H.H. Wieder, W.S.C. Chang, and C.W. Tu, Mater. Res. Soc. Symp. Proc. (1995).Google Scholar
  42. 42.
    X.B. Mei, K.K. Loi, H.H. Wieder, W.S.C. Chang, and C.W. Tu, Appl. Phys. Lett. 68 (1996).Google Scholar
  43. 43.
    H.K. Dong, N.Y. Li, C.W. Tu, M. Geva, and W.C. Mitchel, J. Electronic Mater. 24, 69 (1995).ADSCrossRefGoogle Scholar
  44. 44.
    N.Y. Li, H.K. Dong, C.W. Tu, and M. Geva, J. Cryst. Growth 150, 245 (1995).Google Scholar
  45. 45.
    H.K. Dong, N.Y. Li, C.W. Tu, M. Geva, and W.C. Mitchel, Mater. Res. Soc. Symp. Proc. 340, 173 (1994).CrossRefGoogle Scholar
  46. 46.
    H. Sugiura, R. Iga, and T. Yamada, J. Cryst. Growth 120, 389 (1992).ADSCrossRefGoogle Scholar
  47. 47.
    H.K. Dong, B.W. Liang, M.C. Ho, S. Hung, and C.W. Tu, J. Cryst. Growth 124, 181 (1992).ADSCrossRefGoogle Scholar
  48. 48.
    H.K. Dong, N.Y. Li, S.W. Wong, and C.W. Tu, Appl. Phys. Lett., to be published.Google Scholar
  49. 49.
    D.A. Bohling, C.R. Abernathy, and K.F. Jensen, J. Cryst. Growth 136 118 (1994).ADSCrossRefGoogle Scholar
  50. 50.
    H.K. Dong, N.Y. Li, and C.W. Tu, J. Electronic Mater. 24, 827 (1995).ADSCrossRefGoogle Scholar
  51. 51.
    T. Yamada, R. Iga, and H. Sugiura, Appl. Phys. Lett. 61, 2449 (1992).ADSCrossRefGoogle Scholar
  52. 52.
    N. Furuhata and A. Okamoto, J. Crystal Growth 112, 1 (1991).ADSCrossRefGoogle Scholar
  53. 53.
    N.Y. Li, Y.M. Hsin, H.K. Dong, T. Nakamura, P.M. Asbeck, and C.W. Tu, J. Crystal Growth 150, 562 (1995).ADSCrossRefGoogle Scholar
  54. 54.
    N.Y. Li, H.K. Dong, Y.M. Hsin, T. Nakamura, P.M. Asbeck, and C.W. Tu, J. Vac. Sci. Technol. B 13, 664 (1995).CrossRefGoogle Scholar
  55. 55.
    M. Konagai, T. Yamada, T. Akatsuka, K. Saito, and K. Takahashi, J. Crystal Growth 98, 167 (1989).ADSCrossRefGoogle Scholar
  56. 56.
    P.M. Enquist, Appl. Phys. Lett. 57, 2348 (1990).ADSCrossRefGoogle Scholar
  57. 57.
    R.J. Malik, J. Nagle, M. Micovic, T. Harris, R.W. Ryan, and L.C. Hopkins, J. Vac. Sci. Technol. B 10, 850 (1992).CrossRefGoogle Scholar
  58. 58.
    B.T. Cunningham, L.J. Guido, J.E. Baker, J.S. Major, Jr., N. Holonyak, Jr., and G.E. Stillman, Appl. Phys. Lett. 55, 687 (1989).ADSCrossRefGoogle Scholar
  59. 59.
    G.-W. Wang, R.L. Pierson, P.M. Asbeck, K.-C. Wang, N.-L. Wang, R. Nubling, M.F. Chang, J. Salerno, and S. Sastry, IEEE Electron Device Lett. 12, 347 (1991).ADSCrossRefGoogle Scholar
  60. 60.
    S.J. Pearton, W.S. Hobson, A.P. Kinsella, J. Kovalchick, U.K. Chakrabarti, and C.R. Abernathy, Appl. Phys. Lett. 56, 1263 (1990).ADSCrossRefGoogle Scholar
  61. 61.
    J. Shirakashi, T. Yamada, M. Qi, S. Nozaki, K. Takahasi, E. Tokumitsu, and M. Konagai, Jpn. J. Appl. Phys. 30, L1609 (1991).ADSCrossRefGoogle Scholar
  62. 62.
    S.A. Stockman, A.W. Hanson, and G.E. Stillman, Appl. Phys. Lett. 60, 2903 (1992).ADSCrossRefGoogle Scholar
  63. 63.
    N.I. Buchan, T.F. Kuech, G. Scilla, and F. Cardone, J. Crystal Growth 110, 405 (1991).ADSCrossRefGoogle Scholar
  64. 64.
    T.J. de Lyon, N.I. Buchan, P.D. Kirchner, J.M. Woodall, G.J. Scilla, and F. Cardone, Appl. Phys. Lett. 58, 517 (1991).ADSCrossRefGoogle Scholar
  65. 65.
    N.Y. Li, H.K. Dong, C.W. Tu, and M. Geva, J. Crystal Growth 150, 245 (1995).Google Scholar
  66. 66.
    A. Stockman, A.W. Hanson, S.M. Lictenthal, M.T Fresina, G.E. Höfler, K.C. Hsieh, and G.E. Stillman, J. Electronic Mater. 21, 1111 (1992).ADSCrossRefGoogle Scholar
  67. 67.
    T.P. Chin, P.D. Kirchner, J.M. Woodall, and C.W. Tu, Appl. Phys. Lett. 59, 2865 (1991).ADSCrossRefGoogle Scholar
  68. 68.
    C.W. Tu, T.P. Chin, and B.W. Liang, J. Crystal Growth 136, 191 (1994).ADSCrossRefGoogle Scholar
  69. 69.
    C.R. Abernathy, S.J. Pearton, F. Ren, W.S. Hobson, T.R. Fullowan, A. Katz, A.S. Jordan, and J. Kovalchick, J. Crystal Growth 105, 375 (1990).ADSCrossRefGoogle Scholar
  70. 70.
    H. Ito and T. Ishibashi, Jpn. J. Appl. Phys. 30, L944 (1991).ADSCrossRefGoogle Scholar
  71. 71.
    E.F. Schubert and R.F. Kopf, J. Crystal Growth 127, 1037 (1993).ADSCrossRefGoogle Scholar
  72. 72.
    C.R. Abernathy, P.W. Wisk, S.J. Pearton, W.S. Hobson, P.H. Fuoss, F.J. Lamelas, S.N.G. Chu, and F. Ren, Appl. Phys. Lett. 60, 1339 (1992).ADSCrossRefGoogle Scholar
  73. 73.
    W.Y. Hwang, D.L. Miller, Y.K. Chen, D.A. Humphrey, J. Vac. Sci. Technol. B 12, 1193 (1994).CrossRefGoogle Scholar
  74. 74.
    C.J. Palmstrom, B.P. Van der Gaag, J.-I. Song, W.-P. Hong, S.A. Schwarz, and S. Novak, Appl. Phys. Lett. 64, 3139 (1994).ADSCrossRefGoogle Scholar
  75. 75.
    S.L. Jackson, M.T. Fresina, J.E. Baker, and G.E. Stillman, Appl. Phys. Lett. 64, 2867 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • C. W. Tu
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations