Advertisement

Solid Source Molecular Beam Epitaxy

  • J. F. Rochette
Chapter
Part of the NATO ASI Series book series (ASHT, volume 14)

Abstract

Molecular Beam Epitaxy (MBE) is a very powerful technique for growing thin layers of semiconductors, metals or insulators. The molecular or atomic beams of the constituent elements crystallize on a substrate maintained at an elevated temperature under ultra-high vacuum environment. The composition of the grown epilayer and its doping level depend directly on the evaporation rate of the elemental sources. The smoothness of the surface of the film is ensured by a relatively low growth rate, generally about lμm per hour, allowing proper surface migration of the atomic species. The source beams can be interrupted very quickly by simple mechanical shutters so that changes in composition and doping can be abrupt on an atomic scale.

Keywords

Molecular Beam Epitaxy Molecular Beam Epitaxy Growth Effusion Cell Sticking Coefficient Molecular Beam Epitaxy System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larsen, P.K. (1985) “RHEED and Photoemission Studies on Semiconductors Grown by MBE”, in Dynamical Phenomena at Surfaces, Interfaces and Superlattice, Springer Ser. Surf. Sci., Vol. 3, Springer-Verlag, Berlin, p. 196Google Scholar
  2. 2.
    Neave, J.H., Joyce, B.A., Dobson, P.J., Norton, N. (1983) Appl. Phys. A 31, 1ADSGoogle Scholar
  3. 3.
    Joyce, B.A. (1985) Rep. Prog. Phys. 48, 1637ADSCrossRefGoogle Scholar
  4. 4.
    Madhukar, A. (1983) Surf. Sci. 132, 344ADSCrossRefGoogle Scholar
  5. 5.
    Ball, C.A.B. and van der Merwe, J.H. (1983) “The Growth of Dislocation-Free Layers”, in Dislocations in Solids, Vol. 6, North-Holland, Amsterdam, Chap. 27Google Scholar
  6. 6.
    Foxon, C.T. (1978) Acta Electron. 21, 139Google Scholar
  7. 7.
    Ploog, K. (1987) J. Cryst. Growth 81, 304ADSCrossRefGoogle Scholar
  8. 8.
    Wood, C.E.C. (1985) “MBE III-V Compounds: Dopant Incorporation, Characteristics and Behaviour” in Molecular Beam Epitaxy and Heterostructures, NATO ASI Ser., Ser. E n° 87, Martinus Nijhoff, Dordrecht, p. 149Google Scholar
  9. 9.
    Ploog, K., Fisher, A., Shubert, E.F. (1986) Surf. Sci. 174, 120ADSCrossRefGoogle Scholar
  10. 10.
    English, J.H., Gossard, A.C., Störmer, H.L., Baldwin, K.W. (1987) Appl. Phys. Lett. 50, 1826ADSCrossRefGoogle Scholar
  11. 11.
    Ploog, K., Hauser, M., Fisher, A. (1988) Appl. Phys. A 45, 233ADSGoogle Scholar
  12. 12.
    Fujiwara, K., Nishikawa, Y., Tokuda, Y., Nakayama,T. (1986) Appl. Phys. Lett. 48, 701ADSCrossRefGoogle Scholar
  13. 13.
    Störmer, H.L. (1983) Surf. Sci. 132, 519ADSCrossRefGoogle Scholar
  14. 14.
    Herman, M.A., Sitter, H. (1989) Molecular Beam Epitaxy, Springer-Verlag BerlinGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. F. Rochette
    • 1
  1. 1.I.C.S. c/o UMIST Ventures LtdManchesterEngland

Personalised recommendations