Advertisement

The 50 Years Following Mosander

  • F. Szabadvary
  • C. Evans
Chapter
Part of the Chemists and Chemistry book series (CACH, volume 15)

Abstract

As we have seen in the previous chapter, the work of Mosander expanded the rare earth family from two (Ce, Y) to six (Ce, La, Di, Tb, Er, Y) members. In the following 30 years, however, the subject ran out of steam. Berzelius had died and the rise of organic chemistry eclipsed the popularity of inorganic chemistry. Moreover those rare earths most readily susceptible to the traditional methods of discovery by fractional precipitation and crystallisation had been identified. Further progress in this direction required the development of improved techniques and new concepts. Thus it is no accident that the next phase of rare earth discovery followed the introduction of spectral analysis by Bunsen and Kirchhoff in 1859, and evolution of the notion that elements could be organized in a logical fashion into predictable groups, as exemplified by Mendeleev’s periodic system of 1869 onwards. The former advance provided a powerful new tool for seeking and identifying potentially novel elements, while the latter gave an indication, albeit at the time an imperfect one, of the number of additional rare earths that might yet exist.

Keywords

Rare Earth Atomic Weight Fractional Precipitation Potassium Sulphate Rare Earth Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auer von Welsbach, C., 1883 Monatshefte fir Chemie 4, 63.Google Scholar
  2. Auer von Welsbach, C., 1884, Monatshefte für Chemie 5, 508.CrossRefGoogle Scholar
  3. Auer von Welsbach, C., 1885, Monatshefte fir Chemie 6, 477.CrossRefGoogle Scholar
  4. Bahr, J. and R.W. Bunsen, 1866, Ann. 131,1;J für Prakt. Chem. 99, 274.Google Scholar
  5. Bettendorf, A., 1890, Ann. 256, 159.Google Scholar
  6. Brauner, B., 1882 Monatshefte für Chemie 3, 1, 486.CrossRefGoogle Scholar
  7. Brauner, B., 1883, J. Chem. Soc. 43, 278.Google Scholar
  8. Bunsen, R.W., 1875, Pogg. Ann. 155,230, 366.CrossRefGoogle Scholar
  9. Cleve, P.T., 1879a, C.R. Hebd. Séances Acad. Sci. 89, 419.Google Scholar
  10. Cleve, P.T., 1879b, C.R. Hebd. Séances Acad. Sci. 89, 521.Google Scholar
  11. Cleve, P.T., 1882, C.R. Hebd. Séances Acad. Sci. 94, 1528.Google Scholar
  12. Cleve, P.T., 1885, Contributions to the Knowledge of Samarium.Google Scholar
  13. Delafontaine, M., 1864, Arch. Phys. Nat. 21(2), 97; Ann. 134, 99.Google Scholar
  14. Delafontaine, M., 1865, Arch. Phys. Nat. 25,105; Bull. Soc. Chim. (Paris) 5 (2), 166.Google Scholar
  15. Delafontaine, M., 1877, Arch. Phys. Nat. 59, 176.Google Scholar
  16. Delafontaine, M., 1878a, Arch. Phys. Nat. 61, 273.Google Scholar
  17. Delafontaine, M., 1878b, C.R. Hebd. Séances Acad. Sci. 87, 559.Google Scholar
  18. Delafontaine, M. 1878c, C.R. Hebd. Séances Acad. Sci. 87, 634.Google Scholar
  19. Delafontaine, M., 1881, C.R. Hebd. Séances Acad. Sci. 93, 63.Google Scholar
  20. Demarçay, E., 1886, C.R. Hebd. Séances Acad. Sci. 102, 1551.Google Scholar
  21. Demarçay, E., 1893, C.R. Hebd. Séances Acad. Sci. 117, 163.Google Scholar
  22. Demarçay, E., 1896, C.R. Hebd Séances Acad. Sci. 122, 728.Google Scholar
  23. Demarçay, E., 1901, C.R. Hebd. Séances Acad. Sci. 132, 1484.Google Scholar
  24. Lecoq de Boisbaudran, P.E., 1879a, C.R. Hebd. Séances Acad. Sci. 88, 322.Google Scholar
  25. Lecoq de Boisbaudran, P.E., 1879b, C.R. Hebd. Séances Acad. Sci. 89,212; Arch. Phys. Nat. 2 (3), 119.Google Scholar
  26. Lecoq de Boisbaudran, P.E., 1879c, C.R. Hebd. Séances Acad. Sci. 89, 516.Google Scholar
  27. Lecoq 4e Boisbaudran, P.E. 1886, C.R. Hebd. Séances Acad. Sci. 102, 1003, 1005.Google Scholar
  28. Lecoq de Boisbaudran, P.E., 1892, C.R. Hebd. Séances Acad. Sci. 114, 575.Google Scholar
  29. Lecoq de Boisbaudran, P.E., 1893, C.R. Hebd. Séances Acad. Sci. 116,611, 674.Google Scholar
  30. Marignac, J.C., 1848, Arch. Phys. Nat. 8, 265.Google Scholar
  31. Marignac, J.C., 1849, Arch. Phys. Nat. 11, 21.Google Scholar
  32. Marignac, J.C., 1853, Ann. Chim. Phys. (Paris) 38 (3), 148.Google Scholar
  33. Marignac, J.C., 1855, C.R. Hebd. Séances Acad. Sci. 42, 288.Google Scholar
  34. Marignac, J.C., 1878a, Arch. Phys. Nat. 61, 283.Google Scholar
  35. Marignac, J.C., 1878b, Arch. Phys. Nat. 64,87; C.R. Hebd. Séances Acad. Sci. 87, 578.Google Scholar
  36. Marignac, J.C., 1880, Arch. Phys. Nat. 3 (3), 413.Google Scholar
  37. Marignac, J.C., 1886, C.R. Hebd. Séances Acad. Sci. 102, 902.Google Scholar
  38. Nilson, L.F., 1879, Ber. Duch. Chem. Ges. 12,551,554; C.R. Hebd. Séances Acad. Sci. 88,642; 91, 118.Google Scholar
  39. Nilson, L.F., 1880, C.R. Hebd. Séances Acad. Sci. 91,56, 118.Google Scholar
  40. Popp, O., 1864, Ann. 131, 197.Google Scholar
  41. Roscoe, H.E., 1882, J. Chem. Soc. 41, 277.Google Scholar
  42. Smith, L., 1878, C.R. Hebd. Séances Acad. Sci. 87, 148.Google Scholar
  43. Soret, J.L., 1878, Arch. Phys. Nat. 61, 322; 63, 89.Google Scholar
  44. Soret, J.L., 1880, Arch. Phys. Nat. 4 (3), 261.Google Scholar
  45. Urbain, G. and H. Lacombe, 1903, C.R. Hebd. Séances Acad. Sci. 137, 792.Google Scholar
  46. Urbain, G., and H. Lacombe, 1904, C.R. Hebd. Séances Acad. Sci. 138, 627.Google Scholar
  47. Young, C.A., 1872, Am. J. Sci. 4 (3), 353.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • F. Szabadvary
    • 1
  • C. Evans
    • 2
  1. 1.Museum for Science and TechnologyBudapestHungary
  2. 2.Ferguson LaboratoryUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations