Advertisement

Heavy Atom Effects in Proton Tunneling Phenomena

  • Richard L. Redington
Part of the NATO ASI Series book series (ASIC, volume 483)

Abstract

Intramolecular H tunneling is often analyzed using 1-D theoretical models, or improved models providing a minimum energy pathway defined by model 2- or 3-D PEFs, or models coupling a 1-D tunneling coordinate to a vibrational bath representing all other modes. The analysis of a tunneling coordinate strongly coupled to one or two heavy atom vibrational modes is of much current interest. This problem, which includes heavy atom vibrational-assisted H tunneling, is experimentally accessible to the methods of low-temperature spectroscopy on molecular beam, matrix-isolated, and solid state samples. Heavy atom effects on intramolecular H tunneling, primarily as observed by optical spectroscopy, are considered in this discussion.

Keywords

Barrier Height Heavy Atom Potential Energy Function Tunneling Rate Schroedinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson, E. B., Decius J. C., and Cross, P. C. (1980) Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra, Dover Publications, Inc.,New York.Google Scholar
  2. 2.
    Lines, M. and Glass, A. M. (1977) Principles and Application of Ferroelectrics and Related Materials, Clarendon Press, Oxford.Google Scholar
  3. 3.
    Hamilton, W. C. and Ibers, F. A. (1963) Structures of HCrO2 and DCrO2 Acta Cryst. 16, 1209–1212.CrossRefGoogle Scholar
  4. 4.
    Tun, Z., Nelmes, R. J., Kuhs, W. F., and Stansfield, R. F. D. (1988) A high-resolution neutron-diffraction study of the effects of deuteration on the ciystal structure of KH2PO4 J. Phys. C: Solid State Phys. 21, 245–248.CrossRefGoogle Scholar
  5. 5.
    Nelmes, R. J. (1987) Structural studies of KDP and the KDP-type transition by neutron and X-ray diffraction: 1970–1985 Ferroelectrics 16, 87–123.CrossRefGoogle Scholar
  6. 6.
    Tomkinson, J., Taylor, A. D., Howard, J., Eckert, J., and Goldstone, J. A. (1985) The inelastic neutron scattering spectrum of chromous acid at high energy transfers, J. Chem. Phys. 82,1112–1114.CrossRefGoogle Scholar
  7. 7.
    Shibata, K. and Ikeda, S. (1992) Incoherent inelastic neutron scattering from the hydrogen-bonded compound KH2PO4 J. Phys. Soc. Jpn. 61, 411–414.CrossRefGoogle Scholar
  8. 8.
    Mizoguchi, K., Nakai, Y., Ikeda, S., Agui, A., Tominaga, Y. (1993) Vibrational modes of deuterium in potassium dideuterium phosphate, J. Phys. Soc. Jpn. 62, 451–454.CrossRefGoogle Scholar
  9. 9.
    Snyder, R. G. and Ibers, J. A. (1962) O-H-O and O-D-O potential energy curves for chromous acid, J. Chem. Phys. 36, 1356–1360.CrossRefGoogle Scholar
  10. 10.
    Viswanath, R. S. and Miller, P. J. (1979) IR overtone spectra of KDP, ADP, RDP and H2SeO3, and their temperature dependence, Solid State Comm. 29, 163–166.CrossRefGoogle Scholar
  11. 11.
    Peercy, P. S. (1975) Measurement of the “soft” mode and coupled modes in the paraelectric and ferroelectric phases of KH2PO4 at high pressure, Phys. Rev. B, 12, 2725–2740.Google Scholar
  12. 12.
    Lawrence, M. C. and Robertson, G. N. (1987) The interpretation of the neutron inelastic scattering and infrared absorption spectra of chromous acid using the double Morse potential model, J. Chem. Phys. 87, 3375–3380.CrossRefGoogle Scholar
  13. 13.
    Lawrence, M. C. and Robertson, G. N. (1981) Estimating the proton potential in KDP from infrared and ciystallographic data, Ferroelectrics 34, 179–186.CrossRefGoogle Scholar
  14. 14.
    Lawrence, M. C. and Robertson, G. N. (1981) Proton tunnelling in chromous acid, Mol. Phys. 43, 193–213.CrossRefGoogle Scholar
  15. 15.
    Lawrence, M. C. and Robertson, G. N. (1980) The temperature and pressure dependence of the proton tunneling frequency in KDP, J. Phys. C: Solid St. Phys. 13, L1053–1059.CrossRefGoogle Scholar
  16. 16.
    Vener, M. V., Scheiner, S., and Sokolov, N. D. (1994) Theoretical study of hydrogen bonding and proton transfer in the ground and lowest excited singlet states of tropolone, J. Chem. Phys. 101, 9755–9765.CrossRefGoogle Scholar
  17. 17.
    Sokolov, N. D. and Savel’ev, V. A. (1977) Dynamics of the hydrogen bond: two-dimensional model and isotope effects, Chem. Phys. 22, 383–399.CrossRefGoogle Scholar
  18. 18.
    Sokolov, N. D. and Savel’ev, V. A. (1994) Isotope effects in weak hydrogen bonds. Allowance for two stretching and two bending modes of the A-H…B fragment, Chem. Phys. 181, 305–317.CrossRefGoogle Scholar
  19. 19.
    Barton, S. A. and Thorson, W. R. (1979) Vibrational dynamics of hydrogen bonds. I. FHF system, J. Chem. Phys. 71, 4263–4283.CrossRefGoogle Scholar
  20. 20.
    Almlof, J. (1972) Hydrogen bond studies. 71. Ab initio calculation of the vibrational structure and equilibrium geometry of HF2 and DF2 Chem. Phys. Lett. 17, 49–52.CrossRefGoogle Scholar
  21. 21.
    Jiang, G. J. and Anderson, G. R. (1973) A semiempirical study of hydrogen bonding in the bifluoride ion, J. Phys. Chem. 77, 1764–1768CrossRefGoogle Scholar
  22. 22.
    Cote, G. L. and Thompson, H. W. (1951) Infra-red spectra and the solid state, III. Potassium bifluoride, Proc. R. Soc. London Ser. A 210, 206–216.CrossRefGoogle Scholar
  23. 23.
    Firth, D. W., Beyer, K., Dvorak, M. A., Reeve, S. W., Grushow, A., and Leopold, K. R. (1991) Tunable far-infrared spectroscopy of malonaldehyde, J. Chem. Phys. 94, 1812–1819.CrossRefGoogle Scholar
  24. 24.
    Baughcum, S. L., Smith, Z., Wilson, E. B., and Duerst, R. W. (1984) Microwave spectroscopic study of malonaldehyde. 3. Vibration-rotation interaction and one-dimensional model for proton tunneling, J. Am. Chem. Soc. 106, 2260–2265.CrossRefGoogle Scholar
  25. 25.
    Turner, P., Baughcum, S. L., Coy, S. L., and Smith, Z. (1984) Microwave spectroscopic study of malonaldehyde. 4. Vibration-rotation interaction in parent species, J. Am. Chem. Soc. 106, 2265–2267.CrossRefGoogle Scholar
  26. 26.
    Shida, N., Barbara, P. F., and Almlof, J. E. (1989) A theoretical study of multidimensional nuclear tunneling in malonaldehyde, J. Chem. Phys. 91, 4061–4072.CrossRefGoogle Scholar
  27. 27.
    Arias, A., Wasserman, T. A. W., and Vaccaro, P. H. (1995) Nonlinear optical spectroscopy of malonaldehyde: an investigation of proton-transfer dynamics in the first excited singlet state, 50th Annual Ohio State University International Symposium on Molecular Spectroscopy, Abstract TH08.Google Scholar
  28. 28.
    Alves, A. C. P. and Hollas, J. M. (1972) The near ultra-violet spectrum of tropolone vapour and its relevance to the molecular structure I. Rotational band contour analysis Mol. Phys. 23, 927–945.CrossRefGoogle Scholar
  29. 29.
    Alves, A. C. P. and Hollas, J. M. (1973) The near ultra-violet absorption spectrum of tropolone vapour II. Vibrational analysis Mol. Phys. 25, 1305–1314.CrossRefGoogle Scholar
  30. 30.
    Tomioka, Y., Ito, M., and Mikami, N. (1983) Electronic spectra of tropolone in a supersonic free jet. Proton tunneling in the S1 state J. Phys. Chem. 87, 4401–4405.CrossRefGoogle Scholar
  31. 31.
    Redington, R. L., Chen, Y., Scherer, G. J., and Field, R. W. (1988) Laser fluorescence excitation spectrum of jet-cooled tropolone: the A1B2-X1 A1 system J. Chem. Phys. 88, 627–633.CrossRefGoogle Scholar
  32. 32.
    Sekiya, H., Nagashima, Y., and Nishimura, Y. (1990) Electronic spectra of jet-cooled tropolone. Effect of the vibrational excitation on the proton tunneling dynamics J. Chem. Phys. 92, 5761–5769.CrossRefGoogle Scholar
  33. 33.
    Sekiya, H., Nagashima, Y., and Nishimura, Y. (1989) The electronic spectra of jet-cooled tropolone. Vibrational assignment for the A1B2-X1A1 transition Bull. Chem. Soc. Jpn. 62, 3229–3231.CrossRefGoogle Scholar
  34. 34.
    Sekiya, H., Nagashima, Y., and Nishimura, Y. (1989) Electronic spectra of jet-cooled tropolone(-OD). Vibrational analysis for the A1B2-X1AI transition Chem. Phys. Lett. 160, 581–585.CrossRefGoogle Scholar
  35. 35.
    Alves, A. C. P., Hollas, J. M., Musa, M., and Ridley, T. (1985) The 370-nm electronic spectrum of tropolone: evidence from single vibronic level fluorescence spectra regarding the assignment of some vibrational fundementals in the X and A states J. Molec. Spectrosc. 109, 99–122.CrossRefGoogle Scholar
  36. 36.
    Tanaka, K., Honjyo, H., Tanaka, T., Takaguchi, H., Ohshima, Y., and Endo, Y. (1991) Abstracts of the Meeting of the Molecular Structure, Yokohama, Japan, (unpublished), p. 223.Google Scholar
  37. 37.
    Redington, R. L. and Redington, T. E. (1979) Tropolone monomer: vibrational spectrum and proton tunneling J. Mol. Spectrosc. 78, 229–247.CrossRefGoogle Scholar
  38. 38.
    Redington, R. L. (1990) Heavy atoms and tunneling in the X state of tropolone J. Chem. Phys. 92, 6447–6455.CrossRefGoogle Scholar
  39. 39.
    Rossetti, R. and Brus, L. E. (1980) Proton tunneling dynamics and an isotopically dependent equilibrium geometry in the lowest excited n-n* singlet state of tropolone J. Chem. Phys. 73, 1546–1550.CrossRefGoogle Scholar
  40. 40.
    Redington, R. L., Redington, T. E., Hunter, M. A., and Field, R. W. (1990) A1B2-X1A1 26v 0transitions of 18O-enriched tropolone J. Chem. Phys. 92, 6456–6462.CrossRefGoogle Scholar
  41. 41.
    Sekiya, H., Sasaki, K., Nishimura, Y., Li, Z.-H., Mori, A., and Takeshita, H. (1990) 18O/16O isotope effect on the laser fluorescence excitation spectrum of jet-cooled tropolone Chem. Phys. Lett. 173, 285–290.CrossRefGoogle Scholar
  42. 42.
    Hameka, H. F. and de la Vega, J. R. (1984) Intramolecular proton exchange in near symmetric cases, J. Am. Chem. Soc. 106, 7703–7705.CrossRefGoogle Scholar
  43. 43.
    Ensminger, F. A., Plassard, J., Zwier, T. S., and Hardingen S. (1995) Mode-selective photoisomerization in 5-hydroxytropolone. 1. Experiment J. Chem. Phys. 102, 5246–5259.CrossRefGoogle Scholar
  44. 44.
    Redington, R. L. and Bock, C. W. (1991) MO study of singlets, triplets, and tunneling in tropolone. 1. Geometries, tunneling, and vibrations in the ground electronic state J. Phys. Chem. 95, 10284–10294.CrossRefGoogle Scholar
  45. 45.
    Nash, J. J., Zwier, T. S., and Jordan, K. D. (1995) Mode-selective photoisomerization in 5- hydroxytropolone. II. Theory, J. Chem. Phys. 102, 5260–5270.CrossRefGoogle Scholar
  46. 46.
    Takada, S. and Nakamura, H. (1995) Effects of vibrational excitation on multidimensional tunneling: general study and proton tunneling in tropolone J. Chem. Phys. 102, 3977–3992.CrossRefGoogle Scholar
  47. 47.
    Takada, S. and Nakamura, H (1994) Wentzel-Kramers-Brillouin theory of multidemensional tunneling: general theory for energy splitting J. Chem. Phys. 100, 98–112.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Richard L. Redington
    • 1
  1. 1.Department of Chemistry and BiochemistryTexas Tech UniversityLubbockUSA

Personalised recommendations