Conformational isomerism and photodecomposition of carboxylic compounds studied by matrix isolation infrared spectroscopy

  • Rui Fausto
Part of the NATO ASI Series book series (ASIC, volume 483)


Matrix isolation constitutes a very powerful sampling technique for spectroscopic studies. In particular this technique can be used successfully to study photochemical reactivity of isolated species submitted to irradiation by a suitable light source. Thus for example, conformational or tautomeric rearrangements and photodegradation reactions can be followed spectroscopically by conventional methods used in connection with it. In this article, the main advantages of using matrix isolation infrared spectroscopy to study conformational equilibria are shortly discussed and examples of application are presented. These include recent studies of photodegradation reactions of matrix-isolated carboxylic compounds.


Acrylic Acid Methyl Formate Matrix Isolation Crotonic Acid Carboxylic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.J.H. Clark and R.E. Hester (eds), Time Resolved Spectroscopy, in Advances in Spectrosc, Vol. 18, 1989Google Scholar
  2. [2]
    M. Bridoux and M. Delhaye, Time resolved and space resolved Raman spectroscopy, in Advances in Infrared and Raman Spectroscopy,.Vol.2 (R.J.H. Clark and R.E. Hester, eds.), John-Wiley & Sons, New York, 1976, Chap.4.Google Scholar
  3. [3]
    B.A. Thrush, Acc.Chem.Res., 116 (1981) 116.CrossRefGoogle Scholar
  4. [4]
    R. Bonneau and J.M. Kelly, J.Am.Chem.Soc., 102 (1980) 1220.CrossRefGoogle Scholar
  5. [5]
    J.F. Durana and A.W. Mantz, in Fourier Transform Infrared Spectroscopy, Vol.2 (J.R. Ferraro and L J. Basile, eds.), Academic Press, New York, 1979.Google Scholar
  6. [6]
    G.N. Lewis, D. Lipkin and T.T. Magel, J.Amer.Chem.Soc., 63 (1941) 3005.CrossRefGoogle Scholar
  7. [7]
    I. Norman and G. Porter, Proc.Roy.Soc. (London), A230 (1955) 399.Google Scholar
  8. [8]
    E.D. Becker and G.C. Pimentel, J.Chem.Phys., 25 (1956) 224.CrossRefGoogle Scholar
  9. [9]
    B. Mayer, Low Temperature Spectroscopy, American Elsevier, New York, 1971.Google Scholar
  10. [10]
    H.E. Hellam (ed), Vibrational Spectroscopy of Trapped Species, Wiley-Interscience, New York, 1973.Google Scholar
  11. [11]
    S. Cradock and A.J. Hinchcliffe, Matrix Isolation: A Technique for the Study of Reactive Inorganic Species, Cambridge University Press, Cambridge, 1975.Google Scholar
  12. [12]
    M. Moskovits and G.A. Ozin (eds.), Cryochemistry, Wiley-Interscience, N.Y., 1976.Google Scholar
  13. [13]
    A. J. Downs and M. Hawkins, Raman Studies of Molecules in Matrices, in Advances in Infrared and Raman Spectroscopy, Vol. 10 (R.J.H. Clark and R.E. Hester, eds.), John-Wiley, New York, 1983, Chap.1.Google Scholar
  14. [14]
    See, for example: M.J. Almond and A.J. Downs, Spectroscopy of Matrix Isolated Species, in Advances in Spectroscopy, Vol.17 (R.J.H. Clark and R.E. Hester, eds.), John-Wiley & Sons, New York, 1989, Chap.1Google Scholar
  15. B.Dick and N.P.Ernsting, J.Phys.Chem., 91 (1987) 4261CrossRefGoogle Scholar
  16. E. Orton, M.A. Morgan and G.C. Pimentel, J.Phys.Chem., 94 (1990) 7927CrossRefGoogle Scholar
  17. K.W. Zilm and D.M. Grant, J.Am.Chem.Soc., 103 (1981) 2913.Google Scholar
  18. [15]
    M. Bodenbinder, S.E. Ulic and H. Willner, J.Phys.Chem., 98 (1994) 6441.CrossRefGoogle Scholar
  19. [16]
    A. Kulbida and A. Nosov, J.Mol.Struct., 256 (1992) 17.CrossRefGoogle Scholar
  20. [17]
    B.I. Swanson and L.H. Jones, J.Mol.Spectrosc., 89 (1981) 566.CrossRefGoogle Scholar
  21. [18]
    J.K. Burdett, M. Poliakoff, J.J. Turner and H. Dubost, Vibrational Energy Levels in Matrix Isolated Species, in Advances in Infrared and Raman Spectroscopy,.Vol.2 (R.J.H. Clark and R.E. Hester, eds.), John-Wiley & Sons, New York, 1976, Chap.1.Google Scholar
  22. [19]
    R. Fausto, F.P.S.Gil and J.J.C. T.-Dias, J.Chem.Soc.Faraday Trans., 89 (1993) 3235.CrossRefGoogle Scholar
  23. [20]
    A. Kulbida, M.N. Ramos, M. Rasanen, J. Nieminen, O. Schrems and R. Fausto, J.Chem.Soc.Faraday Trans., 91 (1995) 1571.CrossRefGoogle Scholar
  24. [21]
    R. Fausto, A. Kulbida and O. Schrems, J.Chem.Soc.Faraday Trans., 91 (1995) 3755.CrossRefGoogle Scholar
  25. [22]
    R. Fausto, L.A.E. Batista de Carvalho, J.J.C. Teixeira-Dias and M.N. Ramos, J.Chem.Soc.Faraday Trans.2, 85 (1989) 1945.CrossRefGoogle Scholar
  26. [23]
    R. Fausto and J.J.C. Teixeira-Dias, J.Mol.Struct.(Theochem.), 150 (1987) 381.CrossRefGoogle Scholar
  27. [24]
    R. Fausto, J.Mol.Struct.(Theochem.), 315 (1994) 123.CrossRefGoogle Scholar
  28. [25]
    J.J.C. Teixeira-Dias and R. Fausto, J.Mol.Struct., 144 (1986) 199.CrossRefGoogle Scholar
  29. [26]
    I.D. Reva, A.M. Plokhotnichenko, E D. Radchenko, G.G. Sheina and Yu. P. Blagoi, Spectrochim Acta, 50A (1994) 1107.Google Scholar
  30. [27]
    R.P. Midler, H. Hollenstein and J.R. Huber, J.Mol.Spectrosc., 100 (1983) 95.CrossRefGoogle Scholar
  31. [28]
    C.E. Blom and H.Hs. Gunthard, Chem.Phys.Lett., 84 (1981) 267.CrossRefGoogle Scholar
  32. [29]
    J.S. Francisco, J.Chem.Phys., 96 (1992) 1167.CrossRefGoogle Scholar
  33. [30]
    J.D. Goddard, Y. Yamaguchi and H.F. Schaefer III, J.Chem.Phys., 96 (1992) 1158.CrossRefGoogle Scholar
  34. [31]
    A. Kulbida and R. Fausto, J.Chem.Soc.Faraday Trans., 89 (1993) 4257.CrossRefGoogle Scholar
  35. [32]
    D. Tevault, M. Lin, M. Umstead and R. Smardzewski, Int.J.Chem.Kinet., 11 (1979) 445CrossRefGoogle Scholar
  36. [33]
    R.N. Perutz and J.J. Turner, J.Chem.Soc.Faraday Trans.2, 69 (1973) 452.CrossRefGoogle Scholar
  37. [34]
    M.D.G. Faria, J.J.C. Teixeira-Dias and R. Fausto, Vibrat.Spectrosc., 2 (1991) 43.CrossRefGoogle Scholar
  38. [35]
    K. Fan and J.E. Boggs, J.Mol.Struct., 157 (1987) 31.CrossRefGoogle Scholar
  39. [36]
    A.J. Bowles, W.O. George and W.F. Maddams, J.Chem.Soc., B (1969) 810.Google Scholar
  40. [37]
    L.A. Carreira, J.Phys.Chem., 80 (1976) 1149.CrossRefGoogle Scholar
  41. [38]
    J. De Smedt, F. Vanhouteghem, C.V. Alsenoy, H.J. Geise, B.V. der Veken and P. Coppens, J.Mol.Struct., 195 (1989) 227.CrossRefGoogle Scholar
  42. [39]
    J.I. Kierns and R.F. Curl, J.Chem.Phys., 48 (1968) 3773.CrossRefGoogle Scholar
  43. [40]
    R. Kewley, D.C. Hemphill and R.F. Curl, J.Mol.Spectr., 44 (1972) 443.CrossRefGoogle Scholar
  44. [41]
    H.N. Voltrauer and RH. Chwendeman, J.Chem.Phys., 54 (1971) 268.CrossRefGoogle Scholar
  45. [42]
    J.R. Durig, R.J. Berry and P. Groner, J.Chem.Phys., 87 (1987) 6303.CrossRefGoogle Scholar
  46. [43]
    P. Carmona and J. Moreno, J.Mol.Struct., 82 (1982) 177.CrossRefGoogle Scholar
  47. [44]
    K. Bolton, D.G. Lister and J. Sheridan, J.Chem.Soc.Faraday Trans.2, 70 (1974) 113.CrossRefGoogle Scholar
  48. [45]
    A.J. Barnes, in Matrix Isolation Spectroscopy, Ed. A.J. Barnes, W.J. Orville-Thomas, A Muller and R. Gaufres, D. Reidel, Dordrecht, 1981, p.531.Google Scholar
  49. [46]
    P.J. Tonge, M. Pusztai, A.J. White, C.W. Wharton and P.R. Carey, Biochemistry, 29 (1991) 4790.CrossRefGoogle Scholar
  50. [47]
    T. Shimanouchi, “Tables of Molecular Vibrational Frequencies”, National Standard Reference Data Series, National Bureau of Standards, Whashington D.C., 1972.Google Scholar
  51. [48]
    H. Hollenstein and Hs.H. Gunthard, J.Mol.Spectrosc., 84 (1980) 457.CrossRefGoogle Scholar
  52. [49]
    B. Silvi, P. Labarbe and J.P. Perchard, Spectrochim Acta, A29 (1973) 263.Google Scholar
  53. [50]
    H. Dubost and L. Abouaf-Marguin, Chem.Phys.Lett., 17 (1972) 269.CrossRefGoogle Scholar
  54. [51]
    H. Dubost, Chem.Phys., 12 (1976) 139.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Rui Fausto
    • 1
  1. 1.Departamento de QuímicaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations