Direct Numerical Simulation of Low-Density Atmospheric Flow on Io

  • J. V. Austin
  • D. B. Goldstein
Part of the NATO ASI Series book series (ASIC, volume 482)


We explore the effects of a non-condensible gas on the SO2 atmospheric flow near volcanic plumes and sublimating frost patches on Io. The flows involve rarefied/continuum transition, compressibility, gas mixtures, and radiation. Preliminary results are presented which show that a non-condensible gas can either limit or enhance the tranport of SO2 away from a local source. Such analysis is of importance for determining the distribution of gases near the surface and, hence, the flux of atmosphere into space. The Direct Simulation Monte Carlo (DSMC) method is used.


Direct Numerical Simulation Direct Simulation Monte Carlo Atmospheric Flow Volcanic Plume Direct Simulation Monte Carlo Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fanale, F.P., Brown, R.H., Cruikshank, D.P. and Clark, R.N. (1979) Significance of absorption features in Io’s IR reflectance spectrum, Nature 280, 760–761.ADSCrossRefGoogle Scholar
  2. 2.
    Smythe, W.D., Nelson, R.M. and Nash, D.B. (1979) Spectral evidence for SO2 frost or absorbate on Io’s surface, Nature 280, 766–767.ADSCrossRefGoogle Scholar
  3. 3.
    Pearl, J.C., Hanle, R., Kunde, V., Maguire, W., Fox, K., Gupta, S., Ponnamperuma C. and Raulin, F. (1979) Identification of gaseous SO2 and new limits for other gases on Io, Nature 288, 757–758.Google Scholar
  4. 4.
    Schneider, N.M., Smyth, W.H. and McGrath, M. A. (1989) Io’s atmosphere and neutral clouds, In M.J.S. Belton, R.A. West, and J. Rahe (eds.), Time-Variable Phenomena in the Jovian System NASA, Washington, D.C, pp. 75–99.Google Scholar
  5. 5.
    Ingersoll, A.P., Summers, M.E. and Schlipf, S.G. (1985) Supersonic meteorology of Io: Sublimation driven flow of SO2, Icarus 64, 375–390.ADSCrossRefGoogle Scholar
  6. 6.
    Ingersoll, A.P. (1989) Io meteorology: How atmospheric pressure is controlled locally by volcanos and surface frosts, Icarus 81, 298–313.ADSCrossRefGoogle Scholar
  7. 7.
    Moreno, M.A., Schubert, G., Baumgardner, J., Kivelson, M.G. and Paige, D.A. (1991) Io’s volcanic and sublimation atmospheres, Icarus 93, 63–81.ADSCrossRefGoogle Scholar
  8. 8.
    Ballester, G.E., Strobel, D.F., Moos, H.W. and Feldman, P. D. (1990) The atmospheric abundance of SO2 on Io, Icarus 88, 1–23.ADSCrossRefGoogle Scholar
  9. 9.
    Lellouch, E., Belton, M., de Pater, I., Paubert, G., Gulkis, S. and Encrenaz, T. (1992) The structure, stability, and global distribution of lo’s atmosphere, Icarus 98, 271–295.ADSCrossRefGoogle Scholar
  10. 10.
    Matson, D.L., Johnson, T.V., McEwen, A.S. and Soderblom, L.A. (1988) Io: The case for an H2S atmosphere, Bull. Am. Astron. Soc. 20, 11–25.Google Scholar
  11. 11.
    Kumar, S., and Hunten, D.M. (1982) The atmospheres of Io and other satellites., in D. Morrison (ed.), Satellites of Jupiter, Univ. of Arizona Press, Tucson, pp. 782–806.Google Scholar
  12. 12.
    Bird, G.A. (1976) Molecular Gas Dynamics, Oxford University Press, London.Google Scholar
  13. 13.
    Goldstein, D.B. (1992) Discrete-velocity collision dynamics for polyatomic molecules, Physics of Fluids A, 4 (8) August.Google Scholar
  14. 14.
    Cook, A.F., Shoemaker, E. and Smith, B. (1979) Dynamics of volcanic plumes on Io, Nature, 280, 743–746.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. V. Austin
    • 1
  • D. B. Goldstein
    • 1
  1. 1.Center for Aeromechanics Research Dept. of Aerospace Engineering and Engineering MechanicsThe University of Texas at AustinAustinUSA

Personalised recommendations