The Recombination of Ionized Species in Supersonic Flows

  • P. Vervisch
  • A. Bourdon
Part of the NATO ASI Series book series (ASIC, volume 482)


When charged particles are present the modeling of a supersonic or hypersonic flow remains a difficult issue. The evaluation of charged particles concentration requires a knowledge of numerous coupled elementary processes and a microscopic description more detailed than for neutral particles. The specificity of ionized flows is coming from the electric nature of charged particles and the weakness of the electron mass. The Poisson equation links strongly together electrons and ions and the Debye length is the scale length below which average charge neutrality cannot be guaranteed. Then if the collisional mean free path is greater than the Debye length, the simulation grid point and the fluid particle of the continuum description are within a neutral medium. This neutral assumption has consequences on the expression of conservation equations (ambipolar regime) and transport coefficients.


Electron Temperature Transport Coefficient Electron Energy Distribution Function Vibrational Temperature Nitrogen Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilke, C.R. (1950) A viscosity equation for gas mixtures, J. Chem. Phys., Vol. 18 no. 4, pp. 517–519ADSCrossRefGoogle Scholar
  2. 2.
    Armaly, B.F. and Sutton, K. (1980) Viscosity of muticomponent partially ionized gas mixtures, AIAA-80–1495Google Scholar
  3. 3.
    Mason, E.A. and Saxena, S.C. (1958) Approximate formula for the thermal conductivity of gas mixtures, Phys. Fluids., Vol. 1 no. 5, pp. 361–369MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Spitzer, L.J. (1962) Physics of fully ionized gases, 2nd. ed. Interscience, New YorkGoogle Scholar
  5. 5.
    Jaffrin, M.Y. (1963) Schock structure in a partially ionized gas, Phys. Fluids, Vol. 8 no. 4, pp. 606ADSCrossRefGoogle Scholar
  6. 6.
    Yos, J.M. (1963) Transport properties of nitrogen, hydrogen, oxygen and airto 30000 K,Tech Memo RAD TM-63–7, AVCO.Google Scholar
  7. 7.
    Barlett, E.P., Kendall R.M. and Rindal R.A. (1985) A unified approximation for the mixture transport properties for multicomponent boundary-layer applications, NASA CR 1063.Google Scholar
  8. 8.
    Ramshaw, J. and Chang, C. (1993) Ambipolar diffusion in two-temperature multicomponent plasmas, Plasma Chem. Plasma Process., Vol. 13 no. 3, pp. 489–498CrossRefGoogle Scholar
  9. 9.
    Lee, J.H. (1980) Electron-Impact vibrational excitation rates in the flowfield of aeroassisted orbital transfer vehicles, J.N. Moss and C.D. Scott.Google Scholar
  10. 10.
    Millikan, R.C. and White, D.R. (1963) Systematics of vibrational relaxation, J. Chem.Phys., Vol. 39 no. 12, pp. 3209–3213ADSCrossRefGoogle Scholar
  11. 11.
    Schwartz, R.N., Slawsky Z.I. and Herzfeld K.F. (1954) Calculation of vibrational relaxation times in gases, J. Chem. Phys., Vol. 22, pp. 767–773ADSCrossRefGoogle Scholar
  12. 12.
    Dmitrieva, I., Pogrebnya, S. and Porshnev, P. (1990) V-T and V-V rate constants for energy transfer in diatomics. An accurate analytical approximation, Chem. Phys., Vol. 142, pp. 25–33CrossRefGoogle Scholar
  13. 13.
    Lagana, A., Garcia, E. and Ciccarelly, L. (1987) Deactivation of vibrationally excited molecules by collision with nitrogen atoms, J. Phys. Chem., Vol. 91, pp. 312–314CrossRefGoogle Scholar
  14. 14.
    Kennerly, R.E. (1980) Absolute total electron scattering cross sections for N 2 between 0.5 and 50 eV, Physical Review A, Vol. 50, pp. 1876–1883ADSCrossRefGoogle Scholar
  15. 15.
    Ramsbottom, C.A. and Bell K.L. (1994) Low-energy electron scattering by atomic nitrogen, Physica Scripta, Vol. 50, pp. 666–667ADSGoogle Scholar
  16. 16.
    Park, C. (1991) Chemical-kinetic problems of future NASA missions 1. Earth entries: A review, AIAA-91–0464.Google Scholar
  17. Park, C. (1989) Non equilibrium hypersonic aerothermodynamics, Wiley, New York.Google Scholar
  18. 17.
    Guberman, S.L. (1991) Dissociative recombination of the ground state of N 2+, Geophysical Research Letters, Vol. 2 no. 6, pp. 1051–1054ADSCrossRefGoogle Scholar
  19. 18.
    Dunn, M.G.and Lordi, J.A. (1970) Measurement of N 2+ + e dissociative recombination in expanding nitrogen flows, AIAA Journal, Vol. 8, pp. 339–345ADSCrossRefGoogle Scholar
  20. 19.
    Zipf, E.C. (1980) The dissociative recombination of vibrational excited N 2+ + ions, Geophysical Research Letters, Vol. 7 no. 9, pp. 645–648ADSCrossRefGoogle Scholar
  21. 20.
    Kossyi, I.A., Kostinsky, A.Y., Matveyev, A.A. and Silakov, V.P. (1992) Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures, Plasma Sources Sci. Technol., Vol. 1. pp. 207–220ADSCrossRefGoogle Scholar
  22. 21.
    Freysinger, W., Khan, F.A., Armentrout, P.B., Tosi P., Dmitriev O. and Bassi, D. (1994) Charge-transfer reaction of N + + N 2 from thermal to 100 eV. Crossed-beam and scattering-cell guided-ion beam experiments, J. Chem.Phys., Vol. 101 no. 5, pp. 3688–3695ADSCrossRefGoogle Scholar
  23. 22.
    Phelps, A.V (1991) Cross sections and swarm coefficients for nitrogen ions and neutrals in N 2 and argon ions and neutrals in Ar for energies from 0.1 eV to 10 keV, J. Chem. Ref. Data., Vol. 20 no. 3, pp. 557–573ADSCrossRefGoogle Scholar
  24. 23.
    Gryzinski, M. (1965) Two-particle collisions.II. Coulomb collisions in the laboratory system of coordinates, Physical Review A, Vol. 138, pp. 322–335MathSciNetADSGoogle Scholar
  25. 24.
    Drawin, H.W. (1968) Plasma Diagnostics, W. Lochte-Hotgreven, Amsterdam.Google Scholar
  26. 25.
    Kunc, J.A. and Soon W.H. (1989) Collisional-radiative nonequilibrium in partially ionized atomic nitrogen, Pysical Review A, Vol.40 no. 10, pp. 5822–5843ADSCrossRefGoogle Scholar
  27. 26.
    Sobelman, I.I. and Vainshtein L.A. and Yukov E.A. (1981) Excitation of atoms and broadening of spectral lines, Springer-verlag, New York.Google Scholar
  28. 27.
    Bourdon, A. and Vervisch P. (1995) Ionization and recombination rates of atomic nitrogen, work in preparationGoogle Scholar
  29. 28.
    Losev, S.A., Kovach, E.A., Makarov V.M., Pogobekjan M.Ju., Serglevskaya, A.L. and Shatalov, O.P. (1995) Chemistry models for air dissociation, this book.Google Scholar
  30. 29.
    Winters, H.F. (1966) Ionic adsorption and dissociation cross section for nitrogen, J. Chem. Phys., Vol. 44 no. 4, pp. 1472–01476ADSCrossRefGoogle Scholar
  31. 30.
    Cosby, P.C. (1993) Electron-impact dissociation of nitrogen, J. Chem. Phys., Vol. 98 no. 12, pp. 9544–9553ADSCrossRefGoogle Scholar
  32. 31.
    Riemann, K.U. (1991) The Bohm criterion and sheath formation, J. Phys. D: Appl. Phys., pp. 493–518Google Scholar
  33. 32.
    Robin, L., Vervisch, P. and Cheron, B. (1994) Experimental study of a supersonic low pressure nitrogen plasma jet, Phys. Plasmas, Vol. 1 no. 2, pp. 444–459ADSCrossRefGoogle Scholar
  34. 33.
    Bultel, A. (1994) Ph.D. Thesis, University of Rouen, France.Google Scholar
  35. 34.
    Domingo, P., Bourdon, A. and Vervisch, P. (1995) Study of a low pressure nitrogen plasma jet, Phys. Plasmas, Vol. 2 no. 7 Google Scholar
  36. 35.
    Robin, L., Cheron, B. and Vervisch, P. (1993) Measurements in a. nitrogen plasma boundary layer: the boundary conditions of charged species, Phys. of Fluid B: Plasma Physics, Vol. 5 no. 2, pp. 610–620CrossRefGoogle Scholar
  37. 36.
    Gorse, C., Cacciatore, M., Capitelli, M., De Benedictis, S., Dilecce, G. (1988) Electron energy distribution functions under N 2 discharge and post-discharge conditions: a self consistent approach, Chem. Phys., Vol. 119, pp. 63–70CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • P. Vervisch
    • 1
  • A. Bourdon
    • 1
  1. 1.CNRS URA 230 - CORIAUniversity of RouenFrance

Personalised recommendations