The Role of Inelastic Rotational and Vibrational Collisions on Transport Coefficients

  • Carl Nyeland
Part of the NATO ASI Series book series (ASIC, volume 482)


The Wang Chang-Uhlenbeck theory of rate coefficients for relaxation and transport (thermal conductivity, viscosity, self-diffusion) for molecular gases are considered. Firstly, the formal results of the theory are discussed for correctness in comparison with the proper theory of transport coefficients. Then some earlier published calculational results for a nitrogen gas using a Monte Carlo treatment of the bimolecular collisions following classical dynamics and also semiclassical dynamics are considered particularly for the meaning of the contribution from the vibrational degrees of freedom to the transport coefficients at high temperatures. These calculations were partly carried out for rotationally, non-vibrating molecules and partly for fully coupled rotational and vibrational degrees of freedom. From the collisional treatment one realised that the first-order treatment of the Wang Chang-Uhlenbeck theory is useful for calculations of transport coefficients for temperatures where the rigid rotor model is appropriate. The results at higher temperatures indicate that inclusion of a quantum mechanical treatment of vibration or eventually higher order terms in the Wang Chang-Uhlenbeck theory is necessary.


Transport Coefficient Excitation Transfer Collision Integral Vibrational Degree Rotational Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang Chang, C,S., Uhlenbeck, G.E. and de Boer, J. (1964), The heat conductivity and viscosity of polyatomic gases, in J. de Boer and G.E. Uhlenbeck (eds.), Studies in Statistical Mechanics, vol. II, North-Holland Publishing Company, Amsterdam, pp. 242–268.Google Scholar
  2. 2.
    Hirschfelder, J.O. (1957) Heat conductivity in polyatomic or electronic excited gases, II, J. Chem. Phys. 26, 282–285.ADSCrossRefGoogle Scholar
  3. 3.
    Eucken, A. (1913) Über das Wärmeleitvermöge, die specifische Wärme und die innere Reibung der Gase, Phys. Z. 14, 324–332.Google Scholar
  4. 4.
    Waldmann, L. (1957) Die Boltzmann-Gleichung für Gase mit rotierende Molekülen, Z. Natuiforschung A 12, 660–662.ADSzbMATHGoogle Scholar
  5. 5.
    Snider, R.F. (1960) Quantum-Mechanical modified Boltzmann equation for degenerated internal states, J. Chem. Phys. 32, 1051–1060.MathSciNetADSCrossRefGoogle Scholar
  6. 6. a.
    Nyeland, C., Poulsen, L.L. and Billing, G.D. (1984) Rotational relaxation and transport coefficients for diatomic gases: Computations on nitrogen, J. Phys. Chem. 88, 1216–1221CrossRefGoogle Scholar
  7. b.
    Nyeland, C. and Billing. G.D. (1988) Transport coefficients of diatomic gases: Internal-State analysis for rotational and vibrational degrees of freedom, ibid 92, 1752–1755.Google Scholar
  8. 7.
    Billing, G.D. and Wang, L. (1992) Semiclassical calculations of transport coefficients and rotational relaxation of nitrogen at high temperatures, J. Phys. Chem. 96, 2572–2575.CrossRefGoogle Scholar
  9. 8.
    Berns, R.M. and van der Avoird, A. (1980) N2-N2, interaction potential from ab initio calculations, with application to the structure of (N2)2, J. Chem. Phys. 72, 6107–6116.ADSCrossRefGoogle Scholar
  10. 9.
    Billingsley, F.P. and Krauss, M. (1974) Quadrupole moment of CO, N2, and NO+, J. Chem. Phys. 60, 2767–2772.ADSCrossRefGoogle Scholar
  11. 10.
    Ling, M.S.H. and Rigby, M. (1984) Towards an intermolecular potential in nitrogen, Mol. Phys. 51, 855–882.ADSCrossRefGoogle Scholar
  12. 11.
    Reuter, D. and Jennings, D.E. (1986) The v =1 ← 0 quadrupole spectrum of N2, J. Mol. Spectrosc. 115, 294–304.ADSCrossRefGoogle Scholar
  13. 12.
    van den Oord, R.J. and Korving, J (1988) The thermal conductivity of polyatomic molecules, J. Chem. Phys. 89, 4333–4338.ADSCrossRefGoogle Scholar
  14. 13.
    Maitland, G.C., Mustafa, M., Wakeham, W.A. and McCourt, F.R.W. (1987) An essentially exact evaluation of transport cross sections for a model of He-N2 interaction, Mol. Phys. 61, 359–387.ADSCrossRefGoogle Scholar
  15. 14.
    Dickinson, A. and Lee, M.S. (1986) Classical trajectory calculations for anisotropy dependent cross-sections for He-N2 mixtures, J. Phys. B 19, 3091–3107.ADSGoogle Scholar
  16. 15.
    Billing, G.D. (1984) The semiclassical treatment of molecular roto-vibrational energy transfer Comput. Phys. Rep. 1, 237–296.ADSCrossRefGoogle Scholar
  17. 16.
    Touloukain, Y.S. (ed.) ( 1970, 1973) Thermophysical Properties of Matter, Vol. 3, 11, Plenum Press, New York.Google Scholar
  18. 17.
    Vogel, E. (1984) Präzisionsmessungen des Viskositätskoeffizienten von Stickstoff und den Edelgasen zwischen Raumtemperatur und 650 K, Ber. Bunsen-Ges. Phys. Chem. 88, 997–1002.Google Scholar
  19. 18.
    Shashkov, A.G. Abraminko, T.N. and Aleininikova, V.I. (1985) J. Engineering Phys. (Engl. Transi.) 49,83–93.Google Scholar
  20. 19.
    Haarman, J.W. (1973) Thermal conductivity measurements of He, Ne, Ar, Kr, N2 and CO2 with a transient hot-wire method, in J. Kestin, (ed.) ‘Transport phenomena–1973’, Am. Inst. Phys. Conf. Proc. 11, 193–198.Google Scholar
  21. 20. a.
    Monchick, L. and Mason, E.A. (1961) The transport properties of polar gases J. Chem. Phys. 35, 1676–1697.ADSCrossRefGoogle Scholar
  22. b.
    Monchick, L., Peireira A.N.G. and Mason, E.A. (1965) Heat conductivity of polyatomic and polar gases and gas mixtures, J. Chem. Phys. 42, 3241–3256.ADSCrossRefGoogle Scholar
  23. 21.
    For a recent review, see McCourt, F.R.W., Beenakker, J.J.M., Köhler, W.E. and Kuščer, I. (1990) Nonequilibrium Phenomena in Polyatomic Gases, Clarendon Press, Oxford.Google Scholar
  24. 22.
    Nyeland, C. and Mason, E.A. (1967) Adiabatic excitation transfer in gases: Effects on transport, Phys. Fluids. 5, 985–991.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Carl Nyeland
    • 1
  1. 1.Institute of ChemistryUniversity of CopenhagenDenmark

Personalised recommendations