Transport Properties of Nonequilibrium Gas Flows

  • Raymond Brun
Part of the NATO ASI Series book series (ASIC, volume 482)


In continuous reactive gaseous media, the macroscopic evaluation of the different quantities is classically obtained from the Navier Stokes equations coupled with kinetic equations (Clarke & Mc Chesney 1976),(Vincenti & Kruger 1965), (Lee 1984). However, until now, the expression of the transport terms related to the dissipative processes has not been clearly established in these reactive media but generally represents an extrapolation of results obtained in non-reactive media or in equilibrium situations (Dorrance 1962), (Hirschfelder et al. 1954), (Yos 1963).


Bulk Viscosity Transport Term Dissociation Rate Constant Collision Integral Relaxation Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Brun & Zappoli 1977]
    Brun, R. and Zappoli, B. (1977) Model equations for a vibrationally relaxing gas, The Physics of Fluids, 9, 1441–1448.ADSCrossRefGoogle Scholar
  2. [Brun et al. 1979]
    Brun, R., Zappoli, B. and Zeitoun, D. (1979) Comparison of two computation methods for vibrational nonequilibrium flows, The Physics of Fluids, 4, 786–787.ADSCrossRefGoogle Scholar
  3. [Brun et al.1984]
    Brun, R., Villa, M.P. and Meolans, J.G. (1984) Generalized transport terms in vibrationally relaxing flows, Rarefied Gas Dynamics, University of Tokyo Press.Google Scholar
  4. [Brun 1986]
    Brun, R. (1986) Transport et Relaxation dans les Ecoulements Gazeux, Masson, Paris.Google Scholar
  5. [Brun 1988]
    Brun, R. (1988) Transport properties in reactive gas flows, AIAA Paper, 88–2655.Google Scholar
  6. [Chapman & Cowling 1970]
    Chapman, S. and Cowling, T. G. (1970) The Mathematical Theory of Non Uniform Gases, Cambridge University Press.Google Scholar
  7. [Clarke & Mc. Chesney 1976]
    Clarke, J. F. and Mc. Chesney, M. (1976) Dynamics of Relaxing Gases, Butterworths, London.Google Scholar
  8. [Dorrance 1962]
    Dorrance, W. H. (1962) Viscous Hypersonic Flows, McGraw-Hill, New- York.Google Scholar
  9. [Ferziger & Kaper 1972]
    Ferziger, J. H. and Kaper, M. G. (1972) Mathematical Theory of Transport Processes in Gases, North Holland, Publishing Company, Amsterdam.Google Scholar
  10. [Hirschfelder et al. 1954]
    Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B. (1954) Molecular Theory of Gases and Liquids, J. Wiley and Sons, New-York.zbMATHGoogle Scholar
  11. [Kogan 1969]
    Kogan, M. N. (1969) Rarefied Gas Dynamics, Plenum Press, New-York.Google Scholar
  12. [Kogan et al. 1979]
    Kogan, M. N., Galkin, V. S. and Makashev, N. K. (1979) Generalized Chapman-Enskog method, Rarefied Gas Dynamics, CEA Paris. c Lee, J. H. ( 1984 ) Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles, AIAA Paper, 84–1729.Google Scholar
  13. [Mason & Monchick 1962]
    Mason, E. A. and Monchick, L. (1962) Heat conductivity of polyatomic and polar gases, J. Chemical Physics, 36, 1622–1640.ADSCrossRefGoogle Scholar
  14. [Mc Cormack 1973]
    Mc Cormack, F. J. (1973) Construction of linearized kinetic models for gaseous mixtures and molecular gases, The Physics of Fluids, 16, 2095–2105.ADSCrossRefGoogle Scholar
  15. [Meolans et al, 1994]
    Meolans, J. G., Brun, R., Mouti, M., Llorca, M. and Chauvin, A. (1994) Vibration-dissociation coupling in high temperature nonequilibrium flows, Aerothermodynamics for Space Vehicles, 2nd Symposium Proceedings ESTEC, Noordwijk ESA, 293–297.Google Scholar
  16. [Morse 1964]
    Morse, T. F. (1964) Kinetic model for gases with internal degrees of freedom,The Physics of Fluids, 2, 159–169.MathSciNetGoogle Scholar
  17. [Park C.1989]
    Park C. (1989) A Review of reaction rates in high temperature air, AIAA paper 89–1740.Google Scholar
  18. [Park C. 1993]
    Park C. (1993) Review of chemical-kinetic problems of future NASA mission. Jour. Therm. and heat transf. 7,3, 385–398.Google Scholar
  19. [Pascal & Brun 1993]
    Pascal, S. and Brun, R. (1993) Transport properties of nonequilibrium gas mixtures, Physical Review E, 5, 3251–3267ADSCrossRefGoogle Scholar
  20. [Philippi & Brun 1981]
    Philippi, P. C. and Brun, R. (1981) Kinetic modeling of poly-atomic gas mixtures, Physica, 105A, 147–168.CrossRefGoogle Scholar
  21. [Vincenti & Kruger 1965]
    Vincenti, W. G. and Kruger, C. H. (1965) Introduction to Physical Gas Dynamics, J. Wiley and Sons, New-York.Google Scholar
  22. [Wang-Chang & Uhlenbeck 1951]
    Wang-Chang, C. S. and Uhlenbeck, G. E. (1951) Transport phenomena in polyatomic gases. University of Michigan Report, CM 681.Google Scholar
  23. [Yos 1963]
    Yos, J. M. (1963) Transport properties of nitrogen, hydrogen, oxygen and air to 30,000 K, Technical Memorandum, RAD TM 63–7 AVCO- RAD, Wilmington.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Raymond Brun
    • 1
  1. 1.Laboratoire IUSTI – MHEQUniversité de Provence – Centre Saint JérômeMarseille – Cedex 20France

Personalised recommendations