The Spontaneous Formation of Current-Sheets in Astrophysical Magnetic Fields

  • B. C. Low
Part of the NATO ASI Series book series (ASIC, volume 481)


This article is an introduction to Parker’s idea that electric current sheets form spontaneously in astrophysical magnetic fields under the condition of high electrical conductivity. Upon formation, the current sheets will collapse to such small widths as to result in resistive reconnection of magnetic fields and heating, despite the very large but finite electrical conductivity. This mechanism is an attractive explanation of the ubiquitous association between magnetic fields and heated plasmas in many astrophysical situations. The hydromagnetic process of this mechanism is illustrated, using a well-studied two-dimensional Cartesian model involving a quadrupolar magnetic field with or without a magnetic null point. The purpose of this illustration is to acquaint the reader with the basic physics in terms of elementary mathematical results and familiar properties which are possible to obtain for this simple model. The general and more complicated processes in three-dimensional magnetic fields is treated in Parker’s latest (1994) monograph on this subject.


Current Sheet Null Point Magnetic Null Point Parker Problem Footpoint Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aly, J.J. (1987) in Proc. Workshop Interstellar Magnetic Fields. ed. R. Beck, R. Graven p. 240, Springer-Verlag, New York.Google Scholar
  2. Aly J.J and Amari T (1989) in Astron. Astrophys, in 221, 287MathSciNetADSzbMATHGoogle Scholar
  3. Antiochos, S.K. (1987) in Astrophys, J. 312, 886ADSCrossRefGoogle Scholar
  4. Charbonneau P. and Low, B.C. (1991) in in Cool Stars, Stellar Systems and the Sun, ed, M.S. Giampapa and J.A. Bookbinder, p. 531, Astron. Soc. Pacific. Sari Francisco.Google Scholar
  5. Hahm, T.S. and Kulsrud, R.M (1985) in Phys. Fluids 28, 2412ADSzbMATHCrossRefGoogle Scholar
  6. Hu, Y.Q. and Low, B.C. (1982) in Sol. Phys. 81, 107.ADSCrossRefGoogle Scholar
  7. Hu Y.Q. Wang JX. Ai G. and Nie, Y.P. (1995) in Sol. Phys. 159. 251ADSCrossRefGoogle Scholar
  8. Karpen J T. Antiochos S.K. and DeVores, C R. (1990) in Astrophys. J. 356 L67.ADSCrossRefGoogle Scholar
  9. Low, B C, (1982) in Rev Geophys. Space Sci. 20, 145.ADSCrossRefGoogle Scholar
  10. Low, B C (1987) in Asrophys. J. 323, 358.ADSCrossRefGoogle Scholar
  11. Low, B.C. (1989) in Astrophys J. 340, 558.ADSCrossRefGoogle Scholar
  12. Low, B.C. (1990) in Ann Rev. Astron. Asrophys. 28, 491.ADSCrossRefGoogle Scholar
  13. Low, B.C. (1991) in Astrophys J. 381, 295.ADSCrossRefGoogle Scholar
  14. Low, B.C. (1992) in Astron. Astrophys. 253, 311.ADSzbMATHGoogle Scholar
  15. Low, B C and Hu, Y.Q. (1983) in Sol. Phys. 84, 83.ADSCrossRefGoogle Scholar
  16. Low, B.C and Wolfson, R. (1988) in Astrophys. J., 324, 574.ADSCrossRefGoogle Scholar
  17. Mikic, Z., Schnack, D.D., and Van Hoven, G. (1989) in Astrophys J., 338, 418.CrossRefGoogle Scholar
  18. Moffatt, H K (1978) in in Advances in Turbulence, ed. G. Comte-Belief, J Meathie, 228 Springer Verlag, New York.Google Scholar
  19. Otani. N F and Strains, H.R. (1988), in Astrophys. J., 325, 468ADSCrossRefGoogle Scholar
  20. Parker, E.N (1972) in Astrophys. J., 174, 499.ADSCrossRefGoogle Scholar
  21. Parker, E.N (1979) Cosmical Magnetic Fields, Oxford University presss, Oxford.Google Scholar
  22. Parker, E.N (1983) in Astrophys. J. 264, 635.ADSCrossRefGoogle Scholar
  23. Parker, E N (1987) in Astrophys. J. 318, 876.ADSCrossRefGoogle Scholar
  24. Parker. E N (1989a) in Geophys. Astrophys. Fluid Dyn. 45, 169ADSCrossRefGoogle Scholar
  25. Parker, E.N (1989b) in Geophys. Astrophys. Fluid Dyn. 46, 105ADSCrossRefGoogle Scholar
  26. Parker E. N (1990a) in Geophys. Astrophys. Fluid Dyn. 52, 183ADSCrossRefGoogle Scholar
  27. Parker E.N (1990b) in Geophys. Astrophys. Fluid Dyn. 53, 43ADSCrossRefGoogle Scholar
  28. Parker. E N (1991) in Phys. Fluids 133, 2652.Google Scholar
  29. Parker, E.N (1994) in Spontaneous Current Sheets in Magnetic Field, Oxford University Press, OxfordGoogle Scholar
  30. Priest, E.R. and Raadu, M.A. (1975) in Sol. Phys. 43, 177.ADSCrossRefGoogle Scholar
  31. Rosner, R. and Knoblock, E. (1982) in Astrophys. J. 262, 349.MathSciNetADSCrossRefGoogle Scholar
  32. Sneyd, A.D (1993) in Geophys. Astrophys. Fluid Dyn. 70, 195.ADSCrossRefGoogle Scholar
  33. Strauss, H.R and Otani, N.F. (1988) in Astrophys. J. 326, 418.ADSCrossRefGoogle Scholar
  34. Sweet, P.A. (1969) in Ann. Rev. Astron. Astrophys. 7, 149.ADSCrossRefGoogle Scholar
  35. Syrovatskii, S.I (1981) in Ann. Rev Astron. Astrophys, 19, 163.ADSCrossRefGoogle Scholar
  36. Titov, V.S. (1992) in Sol. Phys. 139, 401.ADSCrossRefGoogle Scholar
  37. Tsinganos K.C., Distler J., and Rosner, R. (1984) in Astrophys. J. 278 409MathSciNetADSCrossRefGoogle Scholar
  38. Vainshtem, S.I and Parker, E.N. (1986) in Astrophys. J. 304, 821ADSCrossRefGoogle Scholar
  39. van Ballegooijen, A.A (1985) in Astrophys. J. 298, 421.ADSCrossRefGoogle Scholar
  40. van Ballegooijen, A.A. (1986) in Astrophys. J. 311, 1001ADSCrossRefGoogle Scholar
  41. Vekstein, G.E. and Priest, E.R. (1992) in Astrophys. J. 384, 333.ADSCrossRefGoogle Scholar
  42. Vekstein, G.E, and Priest, E.R. (1993) in Sol. Phys. 146, 119.ADSCrossRefGoogle Scholar
  43. Vekstein, G., Priest, E.R. and Amari, T. (1991) in Astron. Astrophys. 243, 492.ADSGoogle Scholar
  44. Wolfson, R. (1989) in Astrophys. J., 344, 471.ADSCrossRefGoogle Scholar
  45. Zweibel, E.G. and Proctor, M.R.E. (1990) in in Topological Fluid Mechanics, ed. H.K. Moffat. p. 187, Cambridge University Press. CambridgeGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • B. C. Low
    • 1
  1. 1.High Altitude ObervatoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations