Ulysses Observations of the Solar Wind Out of the Ecliptic Plane

  • W. C. Feldman
  • J. L. Phillips
  • B. L. Barraclough
  • C. M. Hammond
Part of the NATO ASI Series book series (ASIC, volume 481)

Abstract

This chapter presents a summary of Ulysses plasma observations of the global structure of the solar wind in the inner heliospliere (1.3 AU < R < 5.4 AU) made between the maximum and minimum phases of solar cycle 22. Salient features are the presence of a low speed, variable flow that marks the extension of the heliomagnetic streamer belt into interplanetary space. A high speed, relatively structure-free wind flows from the large-area coronal holes that cover both solar polar caps. The streamer belt was roughly planar and tilted by about 30° relative to the ecliptic plane just after the Ulysses Jupiter encounter. It evolved to an approximately 42°- wide disk parallel to the equatorial plane at the time of perihelion. The 30° tilt at the beginning of the high latitude traverse of Ulysses caused the generation of a series of strong corotating interaction regions that were bounded by equatorward-propagating forward shocks at their leading edges and poleward-propagating reverse shocks at their trailing edges. A new class of forward-reverse shock pairs driven by the over-expansion of coronal mass ejections was also observed. Both types of shocks were observed up to — 58° heliographic latitude. The radial and latitudinal dependences of many basic quantities that characterize the high-latitude solar wind are documented and discussed.

Keywords

Solar Wind Coronal Mass Ejection Coronal Hole Heliocentric Distance Ecliptic Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antia, H.M., and Basil. S. (1994) Measuring the Helium abundance in the solar envelope: the role of equation of state, Astrophys. J., 426, 801–811.ADSCrossRefGoogle Scholar
  2. Bahcall, J.N. and Pinsonneault, M.H. (1992) Helium diffusion in the Sun. Astrophys. J. 395, L119-L122.ADSCrossRefGoogle Scholar
  3. Beckers, J. M. (1972) Solar spicules. Ann. Rev. Astron. Astrophys. 9. 73–100.Google Scholar
  4. Balogh A., Smith E.J., Tsurutani B.T., Tsurutani D.J., Forsyth R.J., and Horburv T.S., (1995) The heliospheric magnetic field over the south polar region of the Sun. Science 268, 1007–1010.Google Scholar
  5. Bame, S.J., Asbridge, J.R., Feldman, W.C. and Gosling, J.T, (1977: Evidence for a structure-free state at high solar wind speeds, J. Geophys. Res. 82. 1487–1492.ADSCrossRefGoogle Scholar
  6. Bame, S.J., McComas, D.J., Barraciough, B.L., Phillips, J.L., Sofaly, K J., Chavez, J C., Goldstein, B.E. and Sakurai, R.K. (1992) The Ulysses Solar Wind Plasma Experiment, Astron. and Astrophys. Suppl. Ser. 92, 237ADSGoogle Scholar
  7. Bame, S.J., Goldstein, B.E. Gosling, J.T., Harvey, J W., Mccomas, D.J., Neugebauer, M., and Phillips, J.L., (1993) Ulysses Observations of a Recurrent High Speed Soiar Wind Stream and the Heliomagnetic Streamer Belt, Geophys. Res. Letters. 20. 2323 1993.Google Scholar
  8. Barnes, A., Gazis, P.R., Phillips, J.L., l995 Constraints on solar wind acceleration mechanisms from Ulysses plasma observations: the first polar pass Geopnys. Res. Lett., press.Google Scholar
  9. Barraciough, B.L., Gosling, J.T., Phillips, J.L., McComas, D.J., Fekhnan, W.C., and Goldstein, B.E., (1995) He Abundance Variations in the Solar Wind: Observations from Ulysses, Proceedings of the Eighth International Solar Wind Conference, suoGoogle Scholar
  10. Borrini, G., Gosling, J.T., Bame, S.J., Feldman, W.C. (1982) Helium abundance enhancements in the solar wind, J. Geophys. Res. 87, 7370–7378ADSCrossRefGoogle Scholar
  11. Burlaga, L.F.E. (1991) Magnetic Clouds, in Physics of the Innner Heliosphere: 2 Particles Waves and Turbulence, R. Schwenn, E. Marsch. eds, Springer Verlae Berlin, pp. 1–22.Google Scholar
  12. Dere, K.P. (1994) Explosive events, magnetic reconnection. and corenal heating. Adv. Space Res., 14, 13–22.ADSCrossRefGoogle Scholar
  13. Feldman., W C., Asbridge. J.R., Bame, S.J. and Gosling, J.T., Hign speed solar wind Flow parameters at 1 AC, J. Geophys. Res., 81, 5054–5060. 1976a.ADSCrossRefGoogle Scholar
  14. Feldmap W C., Abraham-Shrauner, B., Asbridge. J.R. and Bame f., (1976b) The internal plasma state of the high speed solar wind at 1 AU. Physics of Solar Planetary Environments, Vol. 1. Williams D.J., ed. Amer. Geophys. union publ pp 413–427.Google Scholar
  15. Feldman W.C., Asbridge J.R., Bame S.J., and Gosling J.T., 1977 Plasma and magnetic fields from the sun. The Solar Output and its Variations, White O.R. ed. (Boulder:Col. Assoc. Univ. Press), pp. 351–382.Google Scholar
  16. Feldman, W.C., Asbridge, J.R., Bame, S.J., Gosling, J.T. and Lemons D.S., (1978) Characteristic electron variations across simple high-speed solar wind streams. J. Geophys. Res., 83, 5285–5295.ADSCrossRefGoogle Scholar
  17. Feldman, W.C., Asbridge, J.R., Bame, S.J., Gosling, J.T. and Lemons D.S. (1979) The core electron temperature profile between 0.5 and 1 AU in the steady-state high speed solar wind. J. Geophys. Res., 84, 4463–4467.ADSCrossRefGoogle Scholar
  18. Feldman W, C., Gosling, J.T., McComas, D.J., and Phillips, J.L., (1993) Evidence for ion jets in the high-speed solar wind. J. Geophys. Res. 98, 5593–5605.ADSCrossRefGoogle Scholar
  19. Gary, S.P., Scime, E.E., Phillips, J.L. and Feldman, W.C. (1994. The Whistler Heat Flux Instability: Threshold Conditions in the Solar Wind, J. Geophys Res 99. 23391. Geiss, J. (1982)Google Scholar
  20. Geiss, J. 1982)Processes affecting abundances in the solar win, Space Sci. Rev, 33 , 201–217ADSCrossRefGoogle Scholar
  21. Gloeckler, G., Galvin, A.B., Ipavich, F.M., Hamilton, D.C., Bochsler, P., Geiss, J., Fisk, L.A. and Wilken, B. (1995) Elemental and charge state composition of the fast solar wind observed with SMS instruments on WIND, in Proceedings of the International Solar Wind 8 Conference, D. Winterhalter, D. McComas, N. Murphy, J. Phillips, eds., Sub.Google Scholar
  22. Gosling, J.T. (1990) Coronal mass ejections and magnetic flux ropes in interplanetary space, Russell, C.T., Priest, E.R. and Lee, L.C. eds., Geophys. Monogr. Ser., Vol. 58, AGU, Washington D.C., 343–364.Google Scholar
  23. Gosling, J.T. (1994) Coronal Mass Ejections in the Solar Wind at High Solar Latitudes: An Overview, Proceedings of the Third SOHO Workshop, Kluwer, p. 275.Google Scholar
  24. Gosling, J.T. (1995) Solar Wind Corotating Interaction Regions: The Third Dimension, U.S. National Report to IUGG, Reviews of Geophysics, Supplement, 33, 597.ADSCrossRefGoogle Scholar
  25. Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L., Pizzo, V.J., Goldstein, B.E. and Neugebauer, M. (1993) Latitudinal Variation of Solar Wind Corotating Stream Interaction Regions, Geophysical Research Letters, 20, 2789.ADSCrossRefGoogle Scholar
  26. Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L., Goldstein, B.E. and Neugebauer, M., (1994a) The Speeds of Coronal Mass Ejections in the Solar Wind at Mid Heliographie Latitudes: Ulysses Geophysical Research Letters, 21, 1109.ADSCrossRefGoogle Scholar
  27. Gosling, J.T., McComas, D.J., Phillips, J.L., Weiss, L.A., Pizzo, V.J., Goldstein, B.E. andForsyth, R.J. (1994b) A New Class of Forward-Reverse Shock Pairs in the Solar Wind, Geophysical Research Letters, 21, 2271.ADSCrossRefGoogle Scholar
  28. Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J L., Seime, E.E., Pizzo, V.J., Goldstein, B.E. and Balogh, A. (1994c) A Forward-Reverse Shock Pair in the Solar Wind Driven by Over-Expansion of a Coronal Mass Ejection: Ulysses Observations, Geophysical Research Letters, 21, 237.ADSCrossRefGoogle Scholar
  29. Gosling, J.T., Bame, S.J., Feldman, W.C., McComas, D.J., Phillips, J.L., Goldstein, B.E., Neugebauer, M., Burkepile, J.T., Hundhausen, A.J. and Acton, L. (1995a) The Band of Solar Wind Variability at Low Heliographie Latitudes Near Solar Activity Minimum: Plasma Results from the Ulysses Rapid Latitude Scan, Geophysical Research Letters, in press.Google Scholar
  30. Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L., Pizzo, V.J., Goldstein, B.E, and Neugebauer, M. (1995b) Solar Wind Corotating Interaction Regions Out of the Ecliptic Plane: Ulysses, Space Science Reviews, 72, 99–104.ADSCrossRefGoogle Scholar
  31. Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L., Balogh, A. and Strong, K.T. (1995c) Coronal Mass Ejections at High Heliographie Latitudes: Ulysses, Space Science Reviews, 72, 133–136.ADSCrossRefGoogle Scholar
  32. Gosling, J.T., McComas, D.J., Phillips, J.L., Pizzo, V.J., Goldstein, B.E., Forsyth, R.J. and Lepping, R.P. (1995d) A CME-Driven Solar Wind Disturbance Observed at Both High and Low Heliographie Latitudes, Geophysical Research Letters, 22, 1753ADSCrossRefGoogle Scholar
  33. Gosling, J.T., Feldman, W.C., McComas, D.J., Phillips, J.L., Pizzo, V.J. and Forsyth, R.J. (1995e) Ulysses Observations of Opposed Tilts of Solar Wind Corotating; Interaction Regions in the Northern and Southern Solar Hemispheres, Geophysical Research Letters, (in press).Google Scholar
  34. Guzik, J.A., and Cox, A.N. (1993) Using solar p-modes to determine the convection zone depth and constrain diffusion-prodused composition gradients, Astrophys. J., 411, 394–401.ADSCrossRefGoogle Scholar
  35. Habbal, S.R. (1992) Coronal energy distribution and X-ray activity in the small scale magnetic field of the quiet sun, Annal. Geophysic., 10, 34–46.ADSGoogle Scholar
  36. Hammond, C.M., Crawford, G.K., Phillips, J.L., Kojima, H., Matsumoto, H., Farnk, L.A., Balogh, A., Kokubun, S. and Yamamoto, T. (1995a) Latitudinal structure of a coronal mass ejection inferred from Ulysses and Geotail observations, Geophys. Res. Lett., 22, 1169–1172.Google Scholar
  37. Hammond, C.M., Feldman, W.C., McComas, D.J. and Phillips, J.L. (1995b) The electron strahl during the Ulysses southern polar pass, Abstract, EOS. sub.Google Scholar
  38. Hansteen, V.H., Holzer, T.E., and Leer, E. (1993) Diffusion effects on the Helium abundance of the solar transition rgion and corona, Astrophvs. J. 402, 334–343.ADSCrossRefGoogle Scholar
  39. Hundhausen, A.J. (1977) An interplanetary view of coronal holes, in Coronal Holes and High Speed Wind Streams, Zirker, J., ed., Boulder, Co., Col. Assoc. Univ. Press, m 225–329Google Scholar
  40. Hyashi, C. (1966), Evolution of protostars, Ann. Rev. Astron. Astrophys. 4. 171–197ADSCrossRefGoogle Scholar
  41. Iben, I, Jr., (1969), The C137 solar neutrino experiment and the solar Helium abundance. Annals of Phys., 54. 164–203.ADSCrossRefGoogle Scholar
  42. Kosovichev, A.G. (1995) Helioseismic measurements of elememtn abundances m the solar interior. Adv. Space Res., 15, 95–99.ADSCrossRefGoogle Scholar
  43. Lemons, D.S., Feldman, W.C. 1983. Collisional modification to the exospheric theory of solar wind halo electron pitch angle distributions, J. Geophys. Res., 88. 6881–6687.ADSCrossRefGoogle Scholar
  44. Lima, J. and Tsinganos, K., (1995), The heliolatitudinal gradient of the solar wind during solar minimum conditions modelled by exact hydrodynamic solutions, Gephysicai Research Letters, (in press).Google Scholar
  45. Lemons, D.S., Feldman, Wr.C. 1983. Collisional modification to the exospheric theory of solar wind halo electron pitch angle distributions. J. Geophys Res, 88 6881–6687ADSCrossRefGoogle Scholar
  46. Marsch, E. 1991. Kinetic physics of the solar wind plasma. Physics of beer. Heliosphere 2 Particles, Waves and Turbulence, Schwenn R., Marsch E. eds.(Berlin:Springer Verlag), pp. 45–133.Google Scholar
  47. Marsch. E., Mühlhäuser. K.-H., Schwerin, R., Rosenbauer, H. Pilipp. W., Neubauer F.M. 1982a. Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU., J Geophys. Res., 87, 52–72ADSCrossRefGoogle Scholar
  48. Marsch, E., Mühlhäuser, K.-H., Rosenbauer, H., Schwenn, R., Neubauer F. M 1982b. Solar Wind Helium ions: Observations of the Helios solar probes between 0.3 and 1 AU. J. Geophys. Res., 87. 35–51ADSCrossRefGoogle Scholar
  49. McComas, D.J., Phillips, J.L., Bame, S.J., Gosling, J.T., Goldstein, B.E. and Neugebauer. M., Ulysses Solar Wind Observations to 56 South, Space Science Reviews. 72 93 1995aADSCrossRefGoogle Scholar
  50. McComas, D.J., Barraciough, B.L., Gosling, J.T., Hammond, C.M., Phillips. J.L., Neugebauer, M., Balogh, A., and Forsyth, R.J., Structures in the Polar Solar Wind: Plasma and Field Observations from Ulysses, Journal of Geophysical Reserch in press. 1995bGoogle Scholar
  51. Neugebauer, M., Goldstein, B.E., McComas, D.J., Suess, S.T and Balogi, A. Ulysses Observations of Microstreams m the Solar Wind from Coronal Hoies. journal of Geophysical Research, submitted, 1995.Google Scholar
  52. Philhps, J.L., Balogh, A., Bame, S.J., Goldstein, B.E., Gosling. J.T., Hoeksema, J I., McComas, D.J., Neugebauer, M., Sheeley. Jr., N.R. and Wang, Y.-M. Ulysses at 50 South: Constant Immersion in the High-Speed Solar Wind, Geophysical Research Letters. 21, 1105, 1994ADSCrossRefGoogle Scholar
  53. Philhps, J.L., Bame, S.J., Feldman, W.C., Gosling, J.T., Hammond. C.M., McComas D.J., Goldstein, B.E. and Neugebauer, M., Ulysses Solar Wind Plasma Observations During the Declining Phase of Solar Cycle 22, Advances in Space Research, 16.69–85 1995a.ADSCrossRefGoogle Scholar
  54. Phillips, J.L., Bame, S.J., Feldman, W.C., Goldstein, B.E., Gosling. J.T. Hammond, C.M., McComas. D.J., Neugebauer, M., Seime, E.E. and Suess S T., Ulysses Solar Wind Plasma Observations at High Southerly Latitudes, Science, 268, 1030, 1995b.ADSCrossRefGoogle Scholar
  55. Philhps, J.L., Bame. S.J., Barnes, A., Barraciough, B.L., Feldman, W.C. Goldstein. B.E… Gosling, J.T., Hoogeveen, G.W., McComas, D.J., Neugebauer, M. and Suess. S T. Ulysses Solar Wind Plasma Observations from Pole to Pole. Geophysical Research Letters, submitted, 1995c.Google Scholar
  56. Philhps. J.L., Bame, S.J., Feldman, W.C., Gosling, J.T., McComas, D.J, Goldstein, B.E., Neugebauer, M. and C.M. Hammond, Ulysses Solar Wind Plasma Observations from Peak Southerly Latitude Through Perihelion and Beyond, Proceedings of the Eighth International Solar Wind Conference, submitted, 1995dGoogle Scholar
  57. Phillips, J.L., Goldstein, B.E., Gosling, J.T., Hammond, C.M., Hoeksema, J.T., and McComas, D.J., Sources of Shocks and Compressions in the High-Latitude Solar Wind: Ulysses, Geophysical Research Letters, in press, 1995e.Google Scholar
  58. Pilipp, W. G., Miggenrieder, H., Montgomery, M.D., Moξhlhoγuser, K.-H., Rosenbauer, H., Schwenn, R. 1987. Characteristics of electron velocity distribution functions in the solar wind derived from the Helios plasma experiment. J. Geophys. Res., 92, 1075–1092.ADSCrossRefGoogle Scholar
  59. Pizzo, V.J., Gosling, J.T., 3-D Simulation of High-Latitude Interaction Regions: Comparison with Ulysses Results, Geophysical Research Letters, 18, 2063, 1994.ADSCrossRefGoogle Scholar
  60. Rosenbauer, H., Schwenn, R., Marsch, E., Meyer, B., Miggenrieder, H., Montgomery, M.D., Moξhlhoγuser, K.H., Pilipp, W., Voges, W., Zink, S.M. Asurvey on initial results of the Helios plasma experiment, J. Geophys., 42, 561, 1977.Google Scholar
  61. Schwenn, R. 1991. Large-scale structure of the interplanetary medium. Physics of the Inner Heliosphere 1 Large-Scale Phenomena. Schwenn, R., Marsch, E., eds. (Berlin:Springer-Verlag), pp. 99–181.Google Scholar
  62. Scime, E.E., Bame, S.J., Feldman, W.C., Gary, S.P., Phillips, J.L. and Balogh, A., Regulation of the Solar Wind Electron Heat Flux from 1 to 5 AU: Ulysses Observations, Journal of Geophysical Research, 99, 23401, 1994.ADSCrossRefGoogle Scholar
  63. Scime. E.E., Bame, S.J., Phillips, J.L., and Balogh, A., Latitudinal Variations in the Solar Wind Electron Heat Flux, Space Science Reviews, 72, 105. 1995.ADSCrossRefGoogle Scholar
  64. Smith, E.J., Neugebauer, M., Balogh, A., Bame, S.J., Erdxs, G., Forsyth, R.J., Goldstein, B.E., Phillips, J.L. and Tsurutani, B.T., Disappearance of the Heliospheric Sector Structure at Ulysses, Geophysical Research Letters, 20, 2327, 1993.ADSCrossRefGoogle Scholar
  65. Smith, E.J., Neugebauer. M., Balogh, A., Bame, S.J., Lepping, R.P. and Tsurutani, B.T. (1995) Ulysses observations of latitude gradients in the heliospheric magnetic field: radial component and variances, Science, 72, 165–170.Google Scholar
  66. Ulrich, R.K. and Cox, A.N. (1991) The computation of standard solar models, in Solar Interior and Atmosphere. Cox, A.N., Livingston. W.C., Matthews, M.S., eds. (Tucson:Univ. Ariz. Press), pp. 162–191.Google Scholar
  67. Withbroe, G.L., Feldman, W.C., and Ahluwalia, H.S. (1991) The solar wind and its origins. Solar Interior and Atmosphere. Cox, A.N., Livingston, W.C., Matthews, M.S., eds. (Tucson:Univ. Ariz. Press) pp. 1087–1106.Google Scholar
  68. von Steiger, R., and Geiss, J. (1989) Supply of fractionated gases to the corona, Astron. Astrophys., 225, 222–238.ADSGoogle Scholar
  69. von Steiger, R., Wimmer Schweingruber, R.F., Geiss, J., and Gloeckler, G. (1995) Abundance variations in the solar wind, Adv. Space Res., 15, 3–12.Google Scholar
  70. Zhao, X.P. and Hundhausen, A.J. (1981) Organization of solar wind plasma properties in a tilted, heliomagnetic coordinate system, J. Geophys. Res., 86, 5423–5430ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • W. C. Feldman
    • 1
  • J. L. Phillips
    • 1
  • B. L. Barraclough
    • 1
  • C. M. Hammond
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations