Skip to main content

Subnanosecond Characteristics and Photophysics of Nanosized TiO2 Particulates from Rpart = 10 A to 134 A: Meaning for Heterogeneous Photocatalysis

  • Chapter
Book cover Fine Particles Science and Technology

Part of the book series: NATO ASI Series ((ASHT,volume 12))

Abstract

Three nanosized TiO2 clusters (Rpart = 10 A, 65 A, and 134 A), prepared by the arrested hydrolysis of TiCl4, had their photophysical properties assessed by absorption and photoluminescence spectroscopy and their subnanosecond characteristics determined by fast laser spectroscopy using 355 nm, 30-ps pulse excitation in the time window -50 ps to 10 ns. Direct and indirect electron transitions between energy levels in the Brillouin zone were observed and assigned for this indirect gap semiconductor. It is argued that for colloidal particles of TiO2 with 2Rpart = 20 A or greater there is no display of a size quantization effect. The subnanosecond transient spectra are composites of spectra of trapped electrons and trapped holes with trapping occurring in subpicosecond time (< 1–10 ps); as well, nearly 90% of the charge carriers have recombined by 1 ns. This has important consequences in heterogeneous photocatalyzed oxidations in the debate as to whether these oxidations implicate directly the valence band holes or the trapped holes, inferred earlier to be surface-bound •OH radicals. Quantum yields of these photoredox processes are therefore expected to be less than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example references in Rajh, T., Micic, O.I., Lawless D., and Serpone, N., (1992), Semiconductor Photophysics. 7. Photoluminescence and picosecond charge carrier dynamics in CdS quantum dots confined in a silicate glass, J.Phys. Chem.,96, 4633–4641.

    Article  CAS  Google Scholar 

  2. See Kamat, P.V., and Dimitrijevic, N.M., (1990), Colloidal Semiconductors as Photocatalysts for Solar Energy Conversion, Solar Energy, 44, 83–98, and references therein.

    Article  CAS  Google Scholar 

  3. See Kamat, P.V. (1994) Interfacial Charge Transfer Processes in Colloidal Semiconductor Systems, Prog. Reaction Kinetics, 19, 277–316, and references therein.

    CAS  Google Scholar 

  4. Bahnemann, D., Cunningham, J., Fox, M.A., Pelizzetti, E., Pichat, P., and Serpone, N., (1994), Photocatalytic Treatment of Waters, in “Aquatic and Surface Photochemistry” Crosby, D., Helz, G., and Zepp, R., Eds., Lewis Publishers, Boca Raton, FL, 387–398.

    Google Scholar 

  5. Ollis, D.F. and Al-Ekabi, H., eds., (1993), “Photocatalytic Treatment of Water and Air”, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  6. Ollis, D.F., Pelizzetti, E., and Serpone, N., (1991), Destruction of Water Contaminants, Environ.Sci.Technol., 25, 1523–1529.

    Article  Google Scholar 

  7. Brus, L., (1994), Luminescence of Silicon Materials: chains, sheets, nanocrystals, nanowires, microcrystals and porous silicon, J.Phys.Chem., 98, 3575–3581.

    Article  CAS  Google Scholar 

  8. Henglein, A., (1987), Q-particles: size quantization effects in colloidal semiconductors, Prog.Colloid Polym.Sci., 73, 1–4.

    Article  CAS  Google Scholar 

  9. Henglein, A., (1988), Mechanism of reactions on colloidal micro-electrodes and size quantization effects, Top.Curr.Chem., 143, 113–180.

    Article  CAS  Google Scholar 

  10. Henglein, A., (1989), Small Particle Research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem.Rev., 89, 1861–1873.

    Article  CAS  Google Scholar 

  11. Micic, O.I., Rajh, T., Nedeljkovic, J.M., and Connor, M.I., (1993), Enhanced redox chemistry in quantized semiconductor colloids, Isr.J.Chem., 33, 59–65.

    CAS  Google Scholar 

  12. Rothenberger, G., Moser, J., Gratzel, M., Serpone, N., and Sharma, D.K., (1985), Charge carrier trapping and recombination dynamics in small semiconductor particles, J.Am.Chem.Soc., 107, 8054–8059.

    Article  CAS  Google Scholar 

  13. Henglein, A. (1982), Colloidal TiO2 catalyzed photo- and radiation chemical processes in aqueous solution, Ber.Bunsenges.Phys.Chem., 86, 241–246.

    CAS  Google Scholar 

  14. Duonghong, D., Ramsden, J., and Gratzel, M., (1982), Dynamics of interfacial electron transfer processes in colloidal semiconductor systems, J.Am.Chem.Soc., 104, 2977–2985.

    Article  Google Scholar 

  15. Bahnemann, D., Henglein, A., Lillie, J., Spanhel, L., (1984), Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal TiO2, J.Phys.Chem., 88, 709–711.

    Article  CAS  Google Scholar 

  16. Bahnemann, D., Henglein, A., Spanhel, L., (1984), Detection of the intermediates of colloidal TiO2-catalyzed photoreactions, Faraday Disc. Chem.Soc., 78, 151–157.

    Article  CAS  Google Scholar 

  17. Howe, R.F., and Gratzel, M., (1985), EPR observation of trapped electrons in colloidal TiO2, J.Phys.Chem., 89, 4495.

    Article  CAS  Google Scholar 

  18. See for example, Micic, O.I., Meglic, M., Lawless, D., Sharma, D.K., and Serpone, N., (1990), Semiconductor photophysics. 5. Charge carrier trapping in ultrasmall silver iodide particles and kinetics of formation of silver atom clusters, Langmuir, 6, 487–492.

    Article  CAS  Google Scholar 

  19. Kormann, C., Bahnemann, D. W., Hoffmann, M. R., (1988), Preparation and characterization of quantum-size titanium dioxide colloids, J. Phys. Chem., 92, 5196–5201.

    Article  CAS  Google Scholar 

  20. Bahnemann, D.W., (1993), Ultrasmall metal oxide particles: preparation, photophysical characterization and photocatalytic properties, Isr.J. Chem., 33, 115–125.

    CAS  Google Scholar 

  21. Kavan, L., Stoto, T., Gratzel, M., Fitzmaurice, D., and Shklover, V., (1993), Quantum size effects in nanocrystalline semiconducting TiO2 layers prepared by anodic oxidative hydrolysis of TiCl3, J.Phys.Chem., 97, 9493–9498.

    Article  CAS  Google Scholar 

  22. Anpo, M., Shima, T., Kodama, S., and Kubokawa, Y., (1987), Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: size quantization effects and reaction intermediates, J.Phys.Chem., 91, 4305–4317.

    Article  CAS  Google Scholar 

  23. Joselevich, E., and Willner, I., (1994), Photosensitization of quantum-size TiO2 particles in water-in-oil microemulsions, J.Phys.Chem., 98, 7628–7635.

    Article  CAS  Google Scholar 

  24. Choi, W., Termin, A., and Hoffmann, M.R, (1994), The role of metal ion dopants in quantum-sized TiO2: correlation between photo-reactivity and charge carrier recombination dynamics, J.Phys.Chem., 98, 13669–13679.

    Article  Google Scholar 

  25. Lawless, D., (1993), Photophysical Studies on Ultra-Small Semiconductor Particles: CdS quantum dots, doped and undoped TiO2, and Silver Halides, Ph.D. Dissertation, Concordia University, Montreal, Canada.

    Google Scholar 

  26. Serpone, N. and Lawless, D., (1995), Size Effects on the Photophysical Properties of Colloidal TiO2 Particulates, J.Phys.Chem., submitted for publication.

    Google Scholar 

  27. Serpone, N., Lawless, D., and Pelizzetti, P., (1995), Subnanosecond relaxation dynamics of TiO2 particulates and their significance in heterogeneous photocatalysis, J.Phys.Chem., submitted for publication.

    Google Scholar 

  28. Daude, N.; Gout, C.; Jouanin, C., (1977), Electronic band structure of titanium dioxide, Phys.Rev.B, 15, 3229–3235.

    Article  CAS  Google Scholar 

  29. Frova, A., Brody, P.J., and Chen, Y.S., (1967), Phys.Rev., 157, 157.

    Article  Google Scholar 

  30. Cardona, M., and Harbeke, G., (1965), Phys.Rev., 137, 1467.

    Article  CAS  Google Scholar 

  31. Koffyberg, F.P., Dwight, K., and Wold, A., (1979), Interband Transitions of Semiconducting Oxides Determined from Photoelectrolysis Spectra, Solid State Commun., 30, 433–437.

    Article  CAS  Google Scholar 

  32. see for example,Serpone, N., Pelizzetti, E., and Hidaka, H., (1993), Heterogeneous Photocatalysis: issues, questions, some answers and some successes, in Photochemical and Photoelectrochemical Conversion and Storage of Solar Energy, Z.W. Tian and Y. Cao, eds., International Academic Publishers, Beijing, China, 33–73.

    Google Scholar 

  33. Micic, O.I., Zhang, Y., Cromack, K.R., Trifunac, A.D., and Thurnauer, M.C., (1993), Trapped holes on TiO2 colloids studied by electron paramagnetic resonance, J.Phys.Chem., 97, 7277–7783.

    Article  CAS  Google Scholar 

  34. Lawless, D., Serpone, N., and Meisel, D., (1991), Role of OH radicals and trapped holes in photocatalysis. A pulse radiolysis study, J.Phys.Chem., 95, 5166–5170.

    Article  CAS  Google Scholar 

  35. Ponterini, G., Serpone, N., Bergkamp, M.A., and Netzel, T.L., (1983), Comparison of radiationless decay processes in osmium and platinum porphyrins, J.Am. Chem.Soc., 105, 4639–4645.

    Article  CAS  Google Scholar 

  36. Serpone, N., Sharma, D.K., Moser, J., and Gratzel, M., (1987), Reduction of acceptor relay species by conduction band electrons of colloidal titanium dioxide: light-induced charge separation in the picosecond time domain, Helv.Chim.Acta, 136, 47–51.

    CAS  Google Scholar 

  37. Brus, L., (1986), Electronic wavefunctions in semiconductor clusters. Experiment and theory, J. Phys. Chem., 90, 2555–2560.

    Article  CAS  Google Scholar 

  38. Kuskinski, J.J., Gomez-Jahn, L.A., Faran, K.J., Gracewski, S.M., and Miller, D., (1989), J.Chem.Phys., 90, 1253.

    Article  Google Scholar 

  39. Acket, G.A., and Volger, J., (1966) Physica (Amsterdam), 32, 1680.

    Article  CAS  Google Scholar 

  40. Pascual, J., Camassel, J., and Mathieu, H., (1978). Phys.Rev.B: Condens.Matter, 18, 5606.

    Article  CAS  Google Scholar 

  41. Agekyan, V.T., Berezhnaya, A.A., Lutsenko, V.V., and Stepanov, Y.A., (1980), Sov.Phys.Solid State, 22, 6.

    Google Scholar 

  42. Gratzel, M., (1989), “Heterogeneous Photochemical Electron Transfer”, CRC Press, Boca Raton, FL.

    Google Scholar 

  43. Pankove, J.I., (1975), “Optical Processes in Semiconductors”, Dover, New York.

    Google Scholar 

  44. Fox, M.A., (1987), Selective formation of organic compounds by photoelectrosynthesis at semiconductor particles, Top.Curr.Chem., 142, 72–79.

    Google Scholar 

  45. Matthews, R.W., (1987), Solar-electric water purification using photocatalytic oxidation with TiO2 as a stationary phase, Solar Energy, 38, 405–413.

    Article  CAS  Google Scholar 

  46. Ollis, D.F., (1985), Contaminant degradation in water. Heterogeneous photocatalysis degrades halogenated hydrocarbon contaminants, Environ.Sci.Technol., 19, 480–484.

    Article  CAS  Google Scholar 

  47. Nishimoto S.-I., Ohtani, B., Shirai, H., Adzuma, S., and Kagiya, T., (1985), Polymn.Commun., 26, 292.

    CAS  Google Scholar 

  48. Moser, J., and Gratzel, M., (1984), Photosensitized electron injection in colloidal semiconductors, J.Am.Chem.Soc., 106, 6557–6564.

    Article  CAS  Google Scholar 

  49. Arntz, F.; Yacoby, Y., Phys.Rev.Lett., 1966, 17, 857.

    Article  CAS  Google Scholar 

  50. Vos, K.; Krusemeyer, Solid State Commun., 1975, 15, 949.

    Article  Google Scholar 

  51. Ghosh, A.K.; Wakim, F.G.; Adiss Jr., P.R., (1969), Photoelectronic processes in rutile, Phys.Rev., 184, 979–988.

    Article  CAS  Google Scholar 

  52. Hashimoto, K., Hiramoto, M., and Sakata, T., (1988), Photoluminescence of TiO2 powder and its relation with photocatalytic reactions, in “Photoelectrochemistry and Electrosynthesis on Semiconducting Materials”, Ginley, D.S., Nozik, A., Armstrong, N., Honda, K., Fujishima, A., and Sakata, T., Eds., The Electrochemical Society, Inc., Pennington, N.J., 88–14, 395–400.

    Google Scholar 

  53. Forss, L. and Schubnell, M., (1993), Temperature dependence of the luminescence of TiO2 powder, Appl.Phys., B56, 363–366.

    Article  Google Scholar 

  54. Lu, G., Linsebigler, A., and Yates, Jr., J.T., (1994), Ti3+ defect sites on TiO2(110): production and chemical detection of active sites, J.Phys.Chem., 98, 11733–11738.

    Article  CAS  Google Scholar 

  55. Colombo Jr., D.P., Roussel, K.A., Saeh, J., Skinner, D.E., Cavaleri, J.J. and Bowman, R.M., (1995), Femtosecond study of the intensity dependence of electron-hole dynamics in TiO2 nanoclusters, Chem.Phys. Letters, 232, 207–214.

    Article  CAS  Google Scholar 

  56. Bolton, J.R, Proceedings First International Conference on Advanced Oxidation Technologies, London, Ontario, Canada, June 1994.

    Google Scholar 

  57. Martin, S.T., Herrmann, H., Choi, W. and Hoffmann, M.R., (1994), Time-resolved microwave conductivity. Part I. TiO2 photoreactivity and size quantization, J.Chem.Soc.Faraday Trans., 90, 3315–3322.

    Article  CAS  Google Scholar 

  58. Martin, S.C., Morrison, C.L. and Hoffmann, M.R., (1994), Photochemical mechanism of size-quantized vanadium-doped TiO2 particles, J.Phys.Chem., 98, 13695–13704.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Serpone, N., Lawless, D., Pelizzetti, E. (1996). Subnanosecond Characteristics and Photophysics of Nanosized TiO2 Particulates from Rpart = 10 A to 134 A: Meaning for Heterogeneous Photocatalysis. In: Pelizzetti, E. (eds) Fine Particles Science and Technology. NATO ASI Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0259-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0259-6_45

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4047-8

  • Online ISBN: 978-94-009-0259-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics