Skip to main content

Directed Photocurrents in Nanostructured SnO2/TiO2/Ru(II)L2(CNS)2 Heterojunctions

  • Chapter
  • 519 Accesses

Part of the book series: NATO ASI Series ((ASHT,volume 12))

Abstract

An electrochemical photovoltaic cell utilizing a nanoporous dye sensitized TiO2 electrode has been described displaying higher efficiency for current collection when exposure is through the SnO2(F-doped) conducting glass support for the TiO2 as compared to exposure from the reverse side [1]. Using the same electrode components, time resolved photocharge, TRPC, measurements are used to ascertain the vectorial directions of transient photocurrents, with and without dye sensitization of the nanoporous TiO2 for coatings on glass and on transparent conducting glass.

The use of UV and visible laser light pulses, with and without CW UV-Visible illumination, make possible the evaluation of the presence and polarity of space charge fields. TiO2 contact with a transparent conducting layer and an adsorbed sensitizing dye, upon equilibration of Fermi levels of the individual phases, spontaneously creates a field across the TiO2 which aids in directing photoelectron currents toward the SnO2(F-doped) electrode, regardless of sample orientation with respect to the incident light - explaining observed TRPC polarity reversals. When exposure is through the conducting glass, the proximity of the region of greatest light absorption to the electrode enhances photoelectron collection by the SnO2(F-doped) coated glass.

Energy band structures are proposed for the various structures investigated, which are consistent with the TRPC results, and with other relevant information available in the literature. For the SnO2(F-doped)-TiO2(nanoporous)-Ru(II)L2(CNS)2 system, a combined n-i-p/quantum well band structure is proposed. The n-i-p segment is considered to consist of SnO2(F-doped) in contact with bulk property TiO2, to which dye is adsorbed on the available surface not in contact with the SnO2. The quantum wells are comprised of nanoporous TiO2 aggregates surrounded by adsorbed Ru(II)L2(CNS)2 aggregates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nazeeruddin, M.K., Kay, A.,.Rodicio, I., Humphrey-Baker, R., Muller, E., Liska, P., Vlachopoulos, N. and Grätzel, M. (1993) Conversion of light to electricity by cis-X2,Bis(2,2’-bipyridyl-4,4’dicarboxyate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I., CN., and SCN) on Nanocrystalline TiO2 Electrodes, J. Am. Chem. Soc. 115, 6382–6390.

    Article  CAS  Google Scholar 

  2. Hagfeldt, A., Vlachopoulos, N. and Grätzel, M J. Electrochem. Soc. in press.

    Google Scholar 

  3. Lin, HM, Hsu, CM, Yang, HY, Leeb, PY and Yang, CC (1994) Sensors and Actuators B-Chemical 22, 63.

    Article  Google Scholar 

  4. Hoyer, P., Eichberger, R. and Weller, H. (1993) Spectrochemical investigations of nanocrystalline ZnO films, Ber. Bunsenges. Phys. Chem. 97, 630–635 (and refs. therein).

    CAS  Google Scholar 

  5. Kavan, L., Stoto, T., Grätzel, M., Fitzmaurice, D.. and Shklover, V. (1993) Quantum size effects in nanocrystalline semiconducting TiO2 layers prepared by anodic oxidative hydrolysis of TiCI3 J. Phys. Chem 97, 9493–9498.

    Article  CAS  Google Scholar 

  6. Dickson, C.R. and Levy B. (1974) Wavelength and Angular dependence of the Dember Effect - an explanation for “anomolus” sign reversals, J. Photogr. Sci. Engn 18, 524.

    CAS  Google Scholar 

  7. Wang, Y and Heron, N. (1991) Nanometer-sized semiconductor clusters: materials sysnthesis, quantum size effects, and photophysical properties, J. Phys. Chem. 95, 525–532.

    Article  CAS  Google Scholar 

  8. Gilbert, S., unpublished results.

    Google Scholar 

  9. Könenkamp, R., Henninger, R., and Hoyer, P. (1993) Photocarrier transport in colloidal TiO2, films, J. Phys. Chem, 97, 7328–7330.

    Article  Google Scholar 

  10. Schwarzburg K., and Willig, F. (1991) Influence of trap filling on photocurrent transients in polycrytalline TiO2, Applied Phys. Lett. 58, 2520–2522.

    Article  CAS  Google Scholar 

  11. Könenkamp, R., Henninger, R. (1994) Recombination in nanophase TiO2 films, Applied Physics A58, 87–90.

    Google Scholar 

  12. Hagfeldt, A., Bjorksten, U., Lindquist, (1992) Photoelectrochemical studies of colloidal TiO2 films: the charge separation process studied by means of action spectra in the UV region, S.-E. Sol. Energy Mat., Sol. Cells 27, 293–304.

    Article  CAS  Google Scholar 

  13. Sodergren, S., Hagfeldt, A., Olsson, J., Lindquist, S.-E. (1994) Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells, J. Phys. Chem. 98, 5552–5556.

    Article  Google Scholar 

  14. Wahi, A, Engelhardt, R., Hoyer, P., Könenkamp, R. Proc. 9th European Conf. Photovoltaic Science and Technology, Montreux, Oct. 1992 (Harwood Acad. Publishers, Switzerland 1993 ); p. 714.

    Google Scholar 

  15. Bube, R. (1992) Photoelectronic Properties of Semiconductors, Cambridge University Press, Cambridge, Great Britain, Ch. 12, pp. 280–305.

    Google Scholar 

  16. Levy, B. (1991) Photocatalytic and photographic heterojunctions, in Photochem. Cony. Storage of Solar Energy; E. Pelizzetti and M. Schiavello, eds. ( Kluwer Acad. Pub. 1991 ); pp. 357–392.

    Google Scholar 

  17. O’Regan, B. and Grätzel, M. (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740.

    Article  Google Scholar 

  18. Tiedje, T. (1984) Information about Band-Tail States from Time-of-Flight Experiments, in Semiconductors and Semimetals, Vol.21, part C, ed. J. I. Pankove, Academic Press, Inc., NY, pp. 207–238.

    Google Scholar 

  19. Memming, R., (1990) Photoelectrochemical utilization of solar energy, in Photochemistry and Photophysics, vol. II, ed J. F. Rabek, CRC Press, Boca Raton, FL, pp. 143–189.

    Google Scholar 

  20. Memming, R., (1988) Photoelectrochemical solar energy conversion, in Topics in Current Chemistry, Vol. 143, ed., E. Steckhan, Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  21. Grätzel, M. (1989) Heterogeneous Photochemical Electron Transfer, CRC Press, Boca Raton, FL.

    Google Scholar 

  22. Levy, B., (1991) Heterojunction models for chemical, spectral and supersensitization of AgX by S, Au and sensitizing dye, J. Soc. Photogr. Sci. Technol. Japan, 54, 477

    CAS  Google Scholar 

  23. Levy, B., (1991) Heterojunctions in imaging and photoconducting catalytic systems, in Proceedings of the Symposium on Electronic and Ionic Properties of Silver Halides, May 12–17, 1991, eds. B.Levy, L.Slifkin, J.Deaton, A.Muenter, T,Tani, I.Leubner and P.Kamat; Society for Imaging Science and Technology, Springfield, VA, pp. 189–197

    Google Scholar 

  24. Levy B., and Mang, T-G, (1994) Field assisted charge transport in dye sensitized AgX and Pt-TiO2-Dye particulate heterojunctions, in Proceedings of the International Conference of Photographic Science (ICPS’ 94), May 15–20,, Rochester, New York.

    Google Scholar 

  25. Levy B., and Zhang, T-G, (1994) Charge transport in TiO2 and in Pt-TiO2 and Pt-TiO2-Dye heterojunction photocatalysts, in Proceedings of the Tenth International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-10), July 24–29, 1994, Interlacken, Switzerland.

    Google Scholar 

  26. Levy, B. (1983) Photographic diode and transistor heterojunction imaging, Photogr.Sci.Engr. 27, 204

    CAS  Google Scholar 

  27. Zhang, TG and Levy, B. (1993) Modulation of photocharge polarity by light intensity in optically formed oriented AgX/Ag heterojunction arrays, Bulgarian Chemical Communications 26 (3/4), 412–427.

    CAS  Google Scholar 

  28. Takahasi K,.and Konagai, M. (1986) Amorphous Silicon Solar Cells, John Wiley and Sons, NY, 1986, pp. 124–163.

    Google Scholar 

  29. Gilbert, S., unpublished results.

    Google Scholar 

  30. see ref. 15, p.38.

    Google Scholar 

  31. Levy, B. and Mattucci, N. (1970) The adsorption and aggregation of cyanine dyes on AgBr, Photgr. Sci. Eng., 14, 308–315.

    CAS  Google Scholar 

  32. Sczechowski, J.G., Koval, C.A. and Noble, R.D. (1993) Improved photoefficiencies for TiO2 photocatalytic reactors through the use of controlled periodic illumination, in Photocatalytic Purification and Treatment of Water and Air, eds. D.F. Ollis and H. Al-Ekabi, Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Levy, B., Liu, W., Gilbert, S. (1996). Directed Photocurrents in Nanostructured SnO2/TiO2/Ru(II)L2(CNS)2 Heterojunctions. In: Pelizzetti, E. (eds) Fine Particles Science and Technology. NATO ASI Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0259-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0259-6_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4047-8

  • Online ISBN: 978-94-009-0259-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics