A Comparison of Pressure-Induced Structural Transformations in CdSe, InP, and Si Nanocrystals

  • A. B. Herhold
  • S. H. Tolbert
  • A. A. Guzelian
  • A. P. Alivisatos
Part of the NATO ASI Series book series (ASHT, volume 12)


Pressure-induced phase transitions in CdSe, InP and Si nanocrystals of 2 to 50 nm in diameter were studied with high pressure X-ray diffraction and optical absorption measurements. All samples were found to transform via a single nucleation event. In addition, all samples transformed at an elevated pressure with a large hysteresis compared to that of the bulk. These phenomena are explained by an overall change in shape of the crystallite after it goes through the phase transition. Evidence for this shape change is shown in the elevation of the phase transition pressure in all samples and in the high pressure shape of the Si nanocrystals. These experiments present an opportunity to investigate first order solid-solid phase transitions on a nanometer scale.


Rock Salt Transition Path CdSe Nanocrystals Rock Salt Structure Large Hysteresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coombes, C.J. (1972) The melting of small particles of lead and indium, J. Phys. F 2, 441–449.CrossRefGoogle Scholar
  2. 2.
    Peppiatt, S.J. and Sambles, J.R. (1975) The melting of small particles. I. Lead, Proc. R. Soc. London Ser. A. 345, 387–399.CrossRefGoogle Scholar
  3. 3.
    Buffat, Ph. and Borel, J-P. (1976) Size effects on the melting temperature of gold particles, Phys. Rev. A 13, 2287–2298.CrossRefGoogle Scholar
  4. 4.
    Goldstein, A.N., Echer, C.M., and Alivisatos, A.P. (1992) Melting in semiconductor nanocrystals, Science 256, 1425–1427.CrossRefGoogle Scholar
  5. 5.
    Tolbert, S.H. and Alivisatos, A.P. (1993) Size dependence of the solid-solid phase transition in CdSe nanocrystals, Z. Phys. D. 26, 56–58.CrossRefGoogle Scholar
  6. 6.
    Tolbert, S.H. and Alivisatos, A.P. (1994) Se EXAFS study of the elevated wurtzite to rock salt structural phase transition in CdSe nanocrystals, in G.C. Hadjipanayis and R.W. Siegel (eds.), NATO ASI Proceedings on Nanophase Materials: Synthesis-Properties-Applications, Kluwer Academic Publishers, Dordrecht, pp. 471–482.Google Scholar
  7. 7.
    Tolbert, S.H. and Alivisatos, A.P. (1994) Size dependence of a first order solid-solid phase transition: the wurtzite to rock salt transformation in CdSe nanocrystals, Science 265, 373–376.CrossRefGoogle Scholar
  8. 8.
    Tolbert, S.H. and Alivisatos, A.P. (1995) The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure, J. Chem. Phys. 102, 1–15.CrossRefGoogle Scholar
  9. 9.
    Tolbert, S.H., Herhold, A.B., Brus, L.E., and Alivisatos, A.P., Pressure induced structural transformations in Si nanocrystals: Surface and shape effects, submittedGoogle Scholar
  10. 10.
    Haase, M. and Alivisatos, A.P. (1992) Arrested solid-solid phase transition in 4-nmdiameter CdS nanocrystals, J. Phys. Chem. 96, 6756–6762.CrossRefGoogle Scholar
  11. 11.
    Tolbert, S.H. and Alivisatos, A.P. (1995) High pressure structural transformations in semiconductor nanocrystals, to be published in Ann. Rev. Phys. Chem.Google Scholar
  12. 12.
    Murray, C.B., Norris, D.J., and Bawendi, M.G. (1993) Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc. 115, 8706–8715.CrossRefGoogle Scholar
  13. 13.
    Micic, O.I., Sprague, J.R., Curtis, C.J., Jones, K.M., Machol, J.L., Nozik, A.J., Giessen, H., Fluegel, B., Mohs, G., and Peyghambarian, N. (1995) Synthesis and characterization of InP, GaP, and GaInP2 quantum dots, J. Phys. Chem. 99, 7754–7759.CrossRefGoogle Scholar
  14. 14.
    Littau, K.A., Szajowski, P.J., Muller, A.J., Kortan, A.R., and Brus, L.E. (1993) A luminescent silicon nanoczystal colloid via a high-temperature aerosol reaction, J. Phys. Chem. 97, 1224.CrossRefGoogle Scholar
  15. 15.
    Edwards, A.L. and Drickamer, H.G. (1961) Effect of pressure on the absorption edges of some III-V, II-VI, and I-VII compounds, Phys. Rev. 122, 1149–1157.CrossRefGoogle Scholar
  16. 16.
    Onodera, A. (1969) High pressure transition in cadmium selenide, Rev. Phys. Chem. Jpn. 39, 65–77.Google Scholar
  17. 17.
    Yu, W.C. and Gielisse, P.J. (1971) High pressure polymorphism in CdS, CdSe, and CdTe, Mat. Res. Bull. 6, 621–638.CrossRefGoogle Scholar
  18. 12.
    Minomura, S. and Drickamer, H.G. (1962) Pressure induced phase transitions in silicon, germanium and some 111-V compounds, JPhys. Chem. Solids 23, 451–456.CrossRefGoogle Scholar
  19. 19.
    Jamieson, J.C. (1963) Crystal structures at high pressures of metallic modifications of compounds of indium, gallium, and aluminum, Science 139, 845–847.CrossRefGoogle Scholar
  20. 20.
    Menoi, C.S. and Spain, I.L. (1987) Equation of state of InP to 19 GPa, Phys. Rev. B 35, 7520–7525.CrossRefGoogle Scholar
  21. 21.
    Jamieson, J.C. (1963) Crystal structures at high pressure of metallic modifications of silicon and germanium, Science 139, 762–764.CrossRefGoogle Scholar
  22. 22.
    Weinstein, B.A. and Piermarini, G.J. (1975) Raman scattering and phonon dispersion in Si and GaP at very high pressure, Phys. Rev. B 12, 1172–1186.CrossRefGoogle Scholar
  23. 23.
    Olijnyk, H., Sikka, S.K., and Holzapfel, W.B. (1984) Structural phase transitions in Si and Ge under pressures up to 50 GPa, Phys. Len. 103A, 137–140.CrossRefGoogle Scholar
  24. 24.
    Hu, J.Z. and Spain, I.L. (1984) Phases of silicon at high pressure, Sol. St. Comm. 51, 263–266.CrossRefGoogle Scholar
  25. 25.
    McMahon, M.I. and Nelmes, R.J. (1993) New high-pressure phase of Si, Phys. Rev. B 47, 8337–8340.CrossRefGoogle Scholar
  26. 26.
    McMahon, M.I., Nelmes, R.J., Wright, N.G., and Allan, D.R. (1994) Pressure dependence of the Imma phase of silicon, Phys. Rev. B 50, 739–743.CrossRefGoogle Scholar
  27. 27.
    Venkateswaran, U.D., Cui, L.J., Weinstein, B.A., and Chambers, F.A. (1992) Forward and reverse high-pressure transitions in bulklike AlAs and GaAs epilayers, Phys Rev. B 45, 9237–9247.CrossRefGoogle Scholar
  28. 28.
    Hanneman, R.E., Banos, M.D., and Gatos, H.C. (1964) High pressure transition in InSb, J. Phys. Chem. Solids 25, 293–302.CrossRefGoogle Scholar
  29. 29.
    Katari, J.E. Bowen, Colvin, V.L., and Alivisatos, A.P. (1994) X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface, J. Phys. Chem. 98, 4109–4117.CrossRefGoogle Scholar
  30. 30.
    Guzelian, A.A., Katari, J.E.B., Kadavanich, A.V., Banin, U., Hamad, K., Alivisatos, A.P., Wolters, R.H., Arnold, C.C., and Heath, J.R., Synthesis of size-selected, surface passivated InP nanocrystals, to be submitted.Google Scholar
  31. 31.
    Wilson, W.L., Szajowski, P.F., and Brus, L.E. (1993) Quantum confinement in size-selected, surface-oxidized silicon nanocrystals, Science 262, 1242–1244.CrossRefGoogle Scholar
  32. 32.
    Mumaghan, F.D., (1944) The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30, 244–247.CrossRefGoogle Scholar
  33. 33.
    Kobayashi, T., Takamasa, T., Kazunori, A., Yamamoto, K., Abe, K., (1981) Inversion of the F and X conduction bands in InP under high pressure, in J.S. Schilling and R.N. Shelton (eds.), Physics of Solids Under High Pressure, North-Holland Publishing Company, Amsterdam, pp. 141–147.Google Scholar
  34. 34.
    Müller, H. Trommer, R., and Cardona, M. (1980) Pressure dependence of the direct absorption edge of InP, Phys. Rev. B 21, 4879–4883.CrossRefGoogle Scholar
  35. 35.
    Menoi, C.S., Hochheimer, H.D., and Spain, I.L. (1986) High-pressure study of photoluminescence in indium phosphide at low temperatures, Phys. Rev. B 33, 5896–5898.CrossRefGoogle Scholar
  36. 36.
    Leroux, M. (1989) Photoluminescence study of the pressure-induced phase transition in InP at low temperature, Semiconductor Science and Technology 4, 231–232.CrossRefGoogle Scholar
  37. 37.
    Gorczyca, I., Christensen, N.E., and Alouani, M. (1989) Calculated optical and structural properties of InP under pressure, Phys. Rev. B 39, 7705–7712.CrossRefGoogle Scholar
  38. 38.
    Tolbert, S.H., Herhold, A.B., Johnson, C.S., and Alivisatos, A.P. (1994) Comparison of quantum confinement effects on the electronic absorption spectra of direct and indirect gap semiconductor nanocrystals, Phys. Rev. Leu. 73, 3266–3269.CrossRefGoogle Scholar
  39. 39.
    Chadi, D.J. and Martin, R.M. (1976) Calculation of lattice dynamical properties from electronic energies: application to C, Si, and Ge, Sol. St. Comm. 19, 643–646.CrossRefGoogle Scholar
  40. 40.
    Weinstein, B.A. (1979) High pressure phonon dispersion of the zinc chalcogenides and the metallic transition, in K.D. Timmerhaus and M.S. Barber (eds.), High Pressure Science and Technology, Plenum, New York, pp. 141–151.Google Scholar
  41. 41.
    Dougherty, T.P., Wiederrecht, G.P., Nelson, K.A., Garrett, M.H., Jensen, H.P., and Warde, C. (1992) Femtosecond resolution of soft mode dynamics in structural phase transitions, Science 258, 770–774.CrossRefGoogle Scholar
  42. 42.
    Burdett, J.K. (1984) From bonds to bands and molecules to solids, Prog. Solid St. Chem. 15, 173–255.CrossRefGoogle Scholar
  43. 43.
    Jayaraman, A., Klement, W., and Kennedy, G.C. (1963) Melting and polymorphic transitions for some group II-VI compounds at high pressures, Phys. Rev. 130, 2277–2283.CrossRefGoogle Scholar
  44. 44.
    Jeanloz, R. (1987) Coexistence curves and equilibrium boundaries for high-pressure phase transformations, J. Geophys. Res. 92, 10352–10362.CrossRefGoogle Scholar
  45. 45.
    Li, X. and Jeanloz, R. (1987) Measurement of the B1–B2 transition pressure in NaCI at high temperatures, Phys. Rev. B, 36, 474–479.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • A. B. Herhold
    • 1
    • 2
  • S. H. Tolbert
    • 3
  • A. A. Guzelian
    • 1
    • 2
  • A. P. Alivisatos
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Department of ChemistryUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations