Dielectric Spectroscopy of Model Colloids, and the Role of Conduction Behind the Plane of Shear

Theory and experiments
  • M. Minor
  • A. van der Wal
  • J. Lyklema
Part of the NATO ASI Series book series (ASHT, volume 12)

Abstract

The Standard Electrokinetic Model (SEM) is adapted for additional surface conduction behind the plane of shear. This extended model is applied to dielectric and electrophoretic measurements. As a model system, spherical, homodisperse bacterial cell suspensions are used which exhibit surface conduction behind the plane of shear due to the hairy cell wall. From the combination of these experiment a more realistic ζ-potential as the fraction of counter charge situated behind the plane of shear can be obtained. Because the surface charge is determined from titrating the isolated cell walls, the mobility of counterions inside the cell wall structure is retrieved.

Keywords

Double Layer Diffuse Layer Surface Conduction Electrokinetic Potential Dipole Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Wiersema, P. H., Loeb, A.L., Overbeek, J.Th.G. (1966) Calculation of the electrophoretic mobility of a spherical colloid particle, J. Colloid Sci. 22, 78 - 99.CrossRefGoogle Scholar
  2. (2).
    Dukhin, S. S., Shilov, V. N. (1974) Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes, Wiley, New York.Google Scholar
  3. (3).
    O’Brien, R. W., White, L.R. (1978) Electrophoretic mobility of a spherical colloidal particle, J. Chem. Soc. Faraday Trans. (II) 74, 1607.CrossRefGoogle Scholar
  4. (4).
    Kijlstra, J., van Leeuwen, H.P., Lyklema, J. (1993) Low-frequency dielectric relaxation of hematite and silica sols, Langmuir 9, 1625 - 1633.CrossRefGoogle Scholar
  5. (5).
    Lyklema (1995) Fundamentals of Interface and Colloid Science, Solid-liquid interfaces, Volume II, Academic Press, London.Google Scholar
  6. (6).
    van der Wal, A., Minor, M. To be published.Google Scholar
  7. (7).
    van der Wal, A., Minor, M. To be published.Google Scholar
  8. (8).
    Fixman, M. (1980) Charged macromolecules in external fields. I. The sphere, J. Chem. Phys. 72, 5177 - 5186.CrossRefGoogle Scholar
  9. (9).
    Fixman, M. (1983) Thin double layer approximation for electrophoresis and dielectric response, J. Chem. Phys. 78, 1483 - 1491.CrossRefGoogle Scholar
  10. (10).
    Hunter (1989) Foundation of Colloid Science, Volume II, Clarendon Press, Oxford.Google Scholar
  11. (11).
    Minor, M., van der Wal, A. To be published.Google Scholar
  12. (12).
    Myers, D. F., Saville, D.A. (1989) Dielectric spectroscopy of colloidal suspensions. I. The dielectric spectrometer, J. Colloid Interface Sci. 131, 448–460.CrossRefGoogle Scholar
  13. (13).
    Kijlstra, J., Wegh, R.A.J., van Leeuwen, H.P. (1994) Impedance spectroscopy of colloids, J. Electroanal. Chem. 366, 37 - 42.CrossRefGoogle Scholar
  14. (14).
    Minor, M. To be published.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. Minor
    • 1
  • A. van der Wal
    • 1
  • J. Lyklema
    • 1
  1. 1.Department of Physical and Colloid ChemistryWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations