Advertisement

Principles of Antibody Catalysis

  • Donald Hilvert
Part of the NATO ASI Series book series (NSSE, volume 320)

Abstract

A wide range of chemical transformations can be catalyzed by antibody molecules elicited with rationally designed transition state analogs. The development of catalytic antibodies consequently represents one of the most versatile and general strategies for creating new enzymes to emerge in the last several years. Recent advances in the production and characterization of these agents are reviewed.

Keywords

Antibody Molecule Catalytic Antibody Claisen Rearrangement Chorismate Mutase Transition State Analog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Pressman, D.; Grossberg, A. (1968) The Structrual Basis of Antibody Specificity, Benjamin, New York.Google Scholar
  2. 2.
    Nisonoff, A., Hopper, J., and Spring, S. (1975) The Antibody Molecule, Academic Press, New York.Google Scholar
  3. 3.
    Kabat, E. A. (1976) Structural Concepts in Immunology and Immunochemistry, Holt, Reinhart and Winston, New York.Google Scholar
  4. 4.
    Alt, F. W., Blackwell, T. K., and Yancopoulos, G. D. (1987) Development of the primary antibody repertoire, Science 238, 1079.CrossRefGoogle Scholar
  5. 5.
    Rajewsky, K., Forster, I., and Cumang, A. (1987) Evolutionary and somatic selection of the antibody repertoire in the mouse, Science 238, 1088.CrossRefGoogle Scholar
  6. 6.
    Lerner, R. A., Benkovic, S. J., and Schultz, P. G. (1991) At the crossroads of chemistry and immunology: Catalytic antibodies, Science 252, 659.CrossRefGoogle Scholar
  7. 7.
    Davies, D. R., Padlan, E. A., and Sheriff, S. (1990) Antibody-antigen complexes, Ann. Rev. Biochem. 59, 439.CrossRefGoogle Scholar
  8. 8.
    Wilson, I. A. and Stanfield, R. L. (1993) Antibody-antigen interactions, Current Opinion in Struct. Biol 3, 113.CrossRefGoogle Scholar
  9. 9.
    Jencks, W. P. (1969) Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, p. 288.Google Scholar
  10. 10.
    Pauling, L. (1948) Chemical achievement and hope for the future, Am. Sci. 36, 51.Google Scholar
  11. 11.
    Andrews, P. R., Smith, G. D., and Young, I. G. (1973) Transition-state stabilization and enzymic catalysis. Kinetic and molecular orbital studies of the rearrangement of chorismate to prephenate, Biochemistry 12, 3492.CrossRefGoogle Scholar
  12. 12.
    Sogo, S. G., Widlanski, T. S., Hoare, J. H., Grimshaw, C. E., Berchtold, G. A., and Knowles, J. R. (1984) Stereochemistry of the rearrangement of chorismate to prephenate: Chorismate mutase involves a chair transition state, J. Am. Chem. Soc. 106, 2701.CrossRefGoogle Scholar
  13. 13.
    Andrews, P. R., Cain, E. N., Rizardo, E., and Smith, G. D. (1977) Rearrangement of chorismate to prephenate. Use of chorismate mutase inhibitors to define the transition state structure, Biochemistry 16, 4848.CrossRefGoogle Scholar
  14. 14.
    Addadi, L., Jaffe, E. K., and Knowles, J. R. (1984) Secondary tritium isotope effects as probes of the enzymic and nonenzymic conversion of chorismate to prephenate, Biochemistry 22, 4494.CrossRefGoogle Scholar
  15. 15.
    Copley, S. D. and Knowles, J. R. (1987) The conformational equilibrium of chorismate in solution: Implications for the mechanism of the nonenzymic and the enzyme-catalyzed rearrangement of chorismate to prephenate, J. Am. Chem. Soc. 109, 5008.CrossRefGoogle Scholar
  16. 16.
    Severence, D. L. and Jorgensen, W. L. (1992) Effects of hydration on the Claisen rearrangement of allyl vinyl ether from computer simulations, J. Am. Chem. Soc. 114, 10966.CrossRefGoogle Scholar
  17. 17.
    Westheimer, F. H. (1962) Mechanisms related to enzyme catalysis, Adv. Enzymol. 24, 441.Google Scholar
  18. 18.
    Görisch, J. (1978) On the mechanism of the chorismate mutase reaction, Biochemistry 17, 3700.CrossRefGoogle Scholar
  19. 19.
    Bartlett, P. A., Nakagawa, Y., Johnson, C. R., Reich, S. H., and Luis, A. (1988) Chorismate mutase inhibitors: Synthesis and evaluation of some potential transition-state analogues, J. Org. Chem. 53, 3195.CrossRefGoogle Scholar
  20. 20.
    Hilvert, D., Carpenter, S.H., Nared, K.D., and Auditor, M.-T.M. (1988) Catalysis of concerted reactions by antibodies: The Claisen rearrangement, Proc. Natl. Acad. Sci. USA 85, 4953.CrossRefGoogle Scholar
  21. 21.
    Jackson, D. Y., Jacobs, J. W., Sugasawara, R., Reich, S. H., Bartlett, P. A., and Schultz, P. G. (1988) An antibody-catalyzed Claisen rearrangement, J. Am. Chem. Soc. 110, 4841.CrossRefGoogle Scholar
  22. 22.
    Hilvert, D. and Nared, K. D. (1988) Stereospecific Claisen rearrangement catalyzed by an antibody, J. Am. Chem. Soc. 110, 5593.CrossRefGoogle Scholar
  23. 23.
    Jackson, D. Y., Liang, M. N., Bartlett, P. A. and Schultz, P. G. (1992) Activation parameters and stereochemistry of an antibody-catalyzed Claisen rearrangement, Angew. Chem. Int. Ed. Engl 31, 182.CrossRefGoogle Scholar
  24. 24.
    Campbell, A. P., Tarasow, T. M., Massefski, W., Wright, P. E., and Hilvert, D. (1993) Binding of a high-energy substrate conformer in antibody catalysis, Proc. Natl Acad. Sci. USA 90, 8663.CrossRefGoogle Scholar
  25. 25.
    Haynes, M. R., Stura, E. A., Hilvert, D., and Wilson, LA. (1994) Routes to catalysis: Structure of a catalytic antibody and comparison with its natural counterpart, Science 263, 646.CrossRefGoogle Scholar
  26. 26.
    Chook, Y. M., Ke, H., and Lipscomb, W. N. (1993) Crystal structures of the monofunctional chorismate mutase from Bacillus subtilis and its complex with a transition state analog, Proc. Natl. Acad. Sci. USA 90, 8600.CrossRefGoogle Scholar
  27. 27.
    Dunitz, J. (1994) The entropic cost of bound water in crystals and biomolecules, Science 264, 670.CrossRefGoogle Scholar
  28. 28.
    Garrard, L. J. and Zhukovsky, E. A. (1992) Antibody expression in bacteriophage systems: The future of monoclonal antibodies? Current Opinion in Biotechnology 3, 474.CrossRefGoogle Scholar
  29. 29.
    Tang, Y., Hicks, J. B., and Hilvert, D. (1991) In vivo catalysis of a metabolically essential reaction by an antibody, Proc. Natl. Acad. Sci. USA 88, 8784.CrossRefGoogle Scholar
  30. 30.
    Stewart, J. D., Liotta, L. J., and Benkovic, S. J. (1993) Reaction mechanisms displayed by catalytic antibodies, Acc. Chem. Res. 26, 396.CrossRefGoogle Scholar
  31. 31.
    Golinelli-Pimpaneau, B., Gigant, B., Bizebard, T., Navaza, J., Saludjian, P., Zemel, R., Tawfik, D. S., Eshhar, Z., Green, B. S., and Knossow, M. (1994) Crystal structure of a catalytic antibody Fab with esterase-like activity, Structure 2, 175.CrossRefGoogle Scholar
  32. 32.
    Stewart, J. D., Roberts, V. A., Thomas, N. R., Getzoff, E. D., and Benkovic, S. J. (1994) Site-directed mutagenesis of a catalytic antibody: An arginine and a histidine residue play key roles, Biochemistry 33, 1994, and references therein.CrossRefGoogle Scholar
  33. 33.
    Janda, K. D., Schloeder, D., Benkovic, S. J., and Lerner, R. A. (1988) Induction of an antibody that catalyzes the hydrolysis of an amide bond, Science 241, 1188.CrossRefGoogle Scholar
  34. 34.
    Lewis, C, Krämer, T., Robinson, S., and Hilvert, D. (1991) Medium effects in antibody-catalyzed reactions, Science 253, 1019.CrossRefGoogle Scholar
  35. 35.
    Kemp, D. S. and Paul, K. G. (1975) The physical organic chemistry of benzisoxazoles. III. The mechanism and the effects of solents on rates of decarboxylation of benzisoxazole-3-carboxylic acids, J. Am. Chem. Soc. 97, 7305.CrossRefGoogle Scholar
  36. 36.
    Tarasow, T. M., Lewis, C, and Hilvert, D. (1994). Investigation of medium effects in a family of decarboxylase antibodies. J. Am. Chem. Soc. 116, 7959.CrossRefGoogle Scholar
  37. 37.
    Casey, M. L., Kemp, D. S., Paul, K. G., and Cox, D. D. (1973) The physical organic chemistry of benzisoxazoles. I. The mechanism of the base-catalyzed decomposition of benzisoxazoles, J. Org. Chem. 38, 2294.CrossRefGoogle Scholar
  38. 38.
    Thorn, S. N., Daniels, R. G., Auditor, M.-T. M. and Hilvert, D. (1995). Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature 373, 228.CrossRefGoogle Scholar
  39. 39.
    Hilvert, D., Hill, K. W., Nared, K. D., and Auditor, M.-T. M. (1989) Antibody catalysis of a Diels-Alder reaction, J. Am. Chem. Soc. 111, 9261.CrossRefGoogle Scholar
  40. 40.
    Braisted, A. C. and Schultz, P. G. (1990) An antibody-catalyzed bimolecular Diels-Alder reaction, J. Am. Chem. Soc. 112, 7430.CrossRefGoogle Scholar
  41. 41.
    Gouverneur, V. E., Houk, K. N., Pascual-Teresa, B., Beno, B., Janda, K. D., and Lerner, R. A. (1993) Control of the exo and endo pathways of the Diels-Alder reaction by antibody catalysis. Science 262, 204.CrossRefGoogle Scholar
  42. 42.
    Hilvert, D. (1993). Antibody catalysis of carbon-carbon bond formation and cleavage. Acc. Chem. Res. 26, 552.CrossRefGoogle Scholar
  43. 43.
    Arevalo, J. H., Stura, E. A., Taussig, M. J., and Wilson, I. A. (1993) Threedimensional structure of an anti-steroid Fab1 and progesterone-Fab1 complex, J. Mol. Biol. 231, 103.CrossRefGoogle Scholar
  44. 44.
    MacBeath, G. and Hilvert, D. (1994) Monitoring catalytic activity by immunoassay: Implications for screening, J. Am. Chem. Soc. 116, 6101.CrossRefGoogle Scholar
  45. 45.
    Cravatt, B. F., Ashley, J. A., Janda, K. D., Boger, D. L., and Lerner, R. A. (1994) Crossing extreme mechanistic barriers by antibody catalysis: Syn elimination to a cis olefin, J. Am. Chem. Soc. 116, 6013.CrossRefGoogle Scholar
  46. 46.
    Li, T., Janda, K. D., Ashley, J. A., and Lerner, R. A. (1994) Antibody catalyzed cationic cyclization, Science 264, 1289.CrossRefGoogle Scholar
  47. 47.
    Sinha, S. C., Keinan, E., and Reymond, J.-L. (1993) Antibody-catalyzed reversal of chemoselectivity, Proc. Natl. Acad. Sci. USA 90, 11910.CrossRefGoogle Scholar
  48. 48.
    Hsieh, L. C., Yonkovich, S., Kochersperger, L., and Schultz P. G. (1993) Controlling chemical reactivity with antibodies, Science 260, 337.CrossRefGoogle Scholar
  49. 49.
    Janda, K. D., Shevlin, C. G., and Lerner, R. A. (1993) Antibody catalysis of a disfavored chemical transformation, Science 259, 490.CrossRefGoogle Scholar
  50. 50.
    Na, J., Houk, K. N., Shevlin, C. G., Janda, K. D., and Lerner, R. A. (1993) The energetic advantage of 5-exo versus 6-endo epoxide openings: A preference overwhelmed by antibody catalysis, J. Am Chem. Soc. 115, 8453.CrossRefGoogle Scholar
  51. 51.
    Reymond, J.-L., Reber, J.-L., and Lerner, R. A. (1994) Enantioselective, multigram-scale synthesis with a catalytic antibody, Angew. Chem Int. Ed. Engl. 33, 475.CrossRefGoogle Scholar
  52. 52.
    Tramontano, A., Janda, K. D., and Lerner, R. A. (1986) Catalytic antibodies, Science 234, 1566.CrossRefGoogle Scholar
  53. 53.
    Pollack, S. J., Jacobs, J. W., and Schultz, P. G. (1986) Selective chemical catalysis by an antibody, Science 234, 1570.CrossRefGoogle Scholar
  54. 54.
    Iverson, B. L. and Lerner, R. A. (1989) Sequence-specific peptide cleavage catalyzed by an antibody, Science 243, 1184.CrossRefGoogle Scholar
  55. 55.
    Tawfik, D. S., Green, B. S., Chap, R., Sela, M., and Eshhar, Z. (1993) catELISA: A facile general route to catalytic antibodies, Proc. Natl. Acad. Sci. USA 90, 373.CrossRefGoogle Scholar
  56. 56.
    Lesley, S. A., Patten, P. A., and Schultz, P. G. (1993) A genetic approach to the generation of antibodies with enhanced catalytic activities. Proc. Natl. Acad. Sci. USA 90, 1160.CrossRefGoogle Scholar
  57. 57.
    Fischer, E. (1894) Einfluss der Configuration auf die Wirkung der Enzyme, Ber. Dt. Chem. Ges. 27, 2985.CrossRefGoogle Scholar
  58. 58.
    Eschenmoser, A. (1994) One hundred years lock-and-key principle. Angew. Chem. Int. Ed. Engl. 33, 2363.CrossRefGoogle Scholar
  59. 59.
    Lichtenthaler, F. W. (1994) 100 Years “Schlüssel-Schloss-Prinzip”: What made Emil Fischer use this analogy? Angew. Chem. Int. Ed. Engl. 33, 2364.CrossRefGoogle Scholar
  60. 60.
    Koshland, D. E., Jr. (1994) The Key-Lock Theory and the Induced Fit Theory. Angew. Chem. Int. Ed. Engl. 33, 2375.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Donald Hilvert
    • 1
  1. 1.Departments of Chemistry and Molecular BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations