Skip to main content

Towards SNIM: Scanning Near-Field Microscopy in the Infrared

  • Chapter
Optics at the Nanometer Scale

Part of the book series: NATO ASI Series ((NSSE,volume 319))

Abstract

The SNOM has successfully replaced the wavelength by an aperture in determining an optical microscope’s ultimate resolution. Thus it appears now feasible that also long-wavelength infrared radiation is exploited for microscopy. The expected benefit is primarily an extension of available contrast mechanisms, especially to include “fingerprint” vibrational absorption specific to the infrared which can identify an object’s chemical composition.

Of the problems to attain a high-resolution SNIM we discuss specifically the cutoff and skin depth effects of metal-coated lightguides. We find that proper choices of tip materials and tip geometries can fully circumvent both obstacles, resulting in the prediction that the SNIM will challenge the SNOM’s 20 nm spatial resolution.

Furthermore we show that the SNIM’s resolution should be improvable even beyond 20 nm by implementing antenna tips as already demonstrated in “apertureless” SNOMs. As an extreme example of going beyond the wavelength limit, we report preliminary scale experiments with an apertureless radiowave-SNIM which has already resolved sub-micrometer features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.H. Synge, Philos. Mag. 6, 356 (1928)

    Google Scholar 

  2. D.W. Pohl, W. Denk and M. Lanz, Appl. Phys. Lett. 44, 651 (1984)

    Article  ADS  Google Scholar 

  3. D.W. Pohl, Europhys. News 26, 75 (1995)

    Google Scholar 

  4. H.F. Hess, E. Betzig, T.D. Harris, L.N. Pfeiffer and K.W. West, Science 264, 1740 (1994)

    Article  ADS  Google Scholar 

  5. M. Fee, S. Chu and T. Hänsch, Opt. Commun. 69, 219 (1989)

    Article  ADS  Google Scholar 

  6. E.A. Ash and G, Nicholls, Nature 237, 510 (1972)

    Article  ADS  Google Scholar 

  7. J.D. Jackson, Classical Electrodynamics, Wiley 1962

    Google Scholar 

  8. M.P. Tu, K. Mbaye, L. Wartski and J. Halbritter, J. Appl. Phys. 63, 4586 (1988)

    Article  ADS  Google Scholar 

  9. J. Halbritter, J. Supercond. 5, 171 (1992)

    Article  ADS  Google Scholar 

  10. H.J. Hagemann, W. Gudat and C. Kunz, DESY report SR-74/7 (1974)

    Google Scholar 

  11. F. Keilmann, Int. J. Infrared and Millimeter Waves 2, 259 (1981)

    Article  ADS  Google Scholar 

  12. F. Keilmann, U.S. patent no? 4, 994, 818 (1991, filed 1988)

    Google Scholar 

  13. F. Keilmann, Infrared Phys. Technol. 36, 217 (1995)

    Article  ADS  Google Scholar 

  14. J. Wessel, J. Opt. Soc. Am. B 2, 1538 (1985)

    ADS  Google Scholar 

  15. M. Specht, J.D. Pedarnig, W.M. Heckl and T.W. Hänsch, Phys. Rev. Lett. 68, 476 (1992)

    Article  ADS  Google Scholar 

  16. F. Zenhausern, Y. Martin and H.K. Wickramasinghe, Science 269, 1083 (1995)

    Article  ADS  Google Scholar 

  17. F. Keilmann and R. Guckenberger, Deutsche Patentanmeldung 19522546 v. 21.6.1995

    Google Scholar 

  18. F. Keilmann, D.W. van der Weide, T. Eickelkamp, R. Merz and D. Stöckle, to be published

    Google Scholar 

  19. A. Kramer, F. Keilmann and R. Guckenberger, in preparation

    Google Scholar 

  20. J.R. Matey and J. Blanc, J. Appl. Phys. 57, 1437 (1985)

    Article  ADS  Google Scholar 

  21. C.D. Bugg and P.J. King, J. Phys. E21, 147 (1988)

    ADS  Google Scholar 

  22. C.C. Williams, W.P. Hough and S.A. Rishton, Appl. Phys. Lett. 55, 203 (1989)

    Article  ADS  Google Scholar 

  23. S. Lanyi, J. Rörök and P. Rehurek, Rev. Sci. Instrum. 65, 2258 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Keilmann, F. (1996). Towards SNIM: Scanning Near-Field Microscopy in the Infrared. In: Nieto-Vesperinas, M., García, N. (eds) Optics at the Nanometer Scale. NATO ASI Series, vol 319. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0247-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0247-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6594-8

  • Online ISBN: 978-94-009-0247-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics