Local Excitation of Surface Plasmons by “TNOM”

  • B. Hecht
  • D. W. Pohl
  • L. Novotny
Part of the NATO ASI Series book series (NSSE, volume 319)


A point light source, such as the aperture scanning near-field optical microscope (SNOM) probe in emission mode, can excite surface plasmon polaritons (SP) in metallic films by means of its near field. We demonstrated this using a tunnel near-field optical microscope (TNOM) with thin silver films as samples. Light is transmitted through the film predominantly into the directions defined by the dispersion relation of the SP, forming a sharply confined conical sheet of radiation in the far field. The angle of emission is larger than the critical angle θC for total reflection, hence not accessible to standard SNOM. The weak emission into allowed directions mainly stems from SP scattering at film imperfections.

With TNOM, it is possible to record “forbidden” (θ≥θc) and “allowed” (θ≤θc) light separately but simultaneously. The resulting scan images represent the intensities of SP excitation and SP scattering at imperfections of the silver film as a function of probe position. Their most conspicuous features are concentric circles and confocal hyperbolae, respectively, suggestive of interactions between plasmons originating from the tip and from nearby scattering centers. Our findings indicate the plasmons scattering/reflection can be studied quantitatively and on a local scale.


Surface Plasmon Polaritons Silver Film Surface Plasmon Polaritons Wave Thin Silver Film Tunnel Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raether, H. (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings, volume 111 of Springer Tracts in Modern Physics. Springer Verlag, Berlin Heidelberg.Google Scholar
  2. 2.
    Fischer, U.Ch. and Pohl, D.W. (1989) Observation on single-particle plasmons by near-field optical microscopy, Phys. Rev. Lett. 62, 458.ADSCrossRefGoogle Scholar
  3. 3.
    Specht, M., Pedarnig, J.D., Heckl, W.M. and Hänsch, T.W. (1992) Scanning plasmon near-field microscope. Phys. Rev. Lett. 68, 476.ADSCrossRefGoogle Scholar
  4. 4.
    Rücker, M., Knoll, W. and Rabe, J. (1992) Surface-plasmon-induced contrast in scanning tunneling microscopy. J. Appl. Phys. 72, 5027.ADSCrossRefGoogle Scholar
  5. 5.
    Kim, Y.-K., Lundquist, P.M., Helfrich, J.A., Mikrut, J.M., Wong, G.K. and Auvil, P.R. (1995) Scanning plasmon optical microscope. Appl. Phys. Lett. 66, 3407.ADSCrossRefGoogle Scholar
  6. 6.
    Marti, O., Bielefeldt, H., Hecht, B., Herminghaus, S., Leiderer, P. and Mlynek, J. (1993) Near-field optical measurement of the surface plasmon field. Optics Commun. 96, 225.ADSCrossRefGoogle Scholar
  7. 7.
    Dawson, P., de Fornel, F. and Goudonnet, J.-P. (1994) Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope. Phys. Rev. Lett. 72, 2927.ADSCrossRefGoogle Scholar
  8. 8.
    de Hollander, R.B.G., van Hulst, N.F. and Kooyman, R.P.H. (1995) Near field plasmon and force microscopy. Ultramicroscopy 57, 263.CrossRefGoogle Scholar
  9. 9.
    Tsai, D.P., Kovacs, J., Moskovits, M., Shalaev, V. and Suh, J.S. (1994) Photon scanning tunneling microscopy of optical excitations of fractal metal colloid clusters. Phys. Rev. Lett. 72, 4149.ADSCrossRefGoogle Scholar
  10. 10.
    Bozhevolnyi, S.I., Vohnsen, B., Smolyaninov, I. and Zayats, A.V. (1995) Direct observation of surface polariton localization caused by surface roughness. Optics Commun. 117, 417.ADSCrossRefGoogle Scholar
  11. 11.
    Dürig, U., Pohl, D.W. and Rohner, F. (1986) Near-field optical-scanning microscopy. J. Appl. Phys. 59, 3318.ADSCrossRefGoogle Scholar
  12. 12.
    Novotny, L., Pohl, D.W. and Hecht, B. (1995) Scanning near-field optical probe with ultrasmall spot size. Opt. Lett. 20, 970.ADSCrossRefGoogle Scholar
  13. 13.
    Kretschmann, E. and Raether, H. (1968) Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. 23a, 2135.Google Scholar
  14. 14.
    Otto, A. (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398.ADSCrossRefGoogle Scholar
  15. 15.
    Hecht, B., Heinzelmann, H. and Pohl, D.W. (1995) Combined aperture SNOM/PSTM: Best of both worlds? Ultramicroscopy 57, 228.CrossRefGoogle Scholar
  16. 16.
    Hecht, B., Heinzelmann, H., Novotny, L. and Pohl, D.W. (1995) “Tunnel” near-field optical microscopy: TNOM-2. In O. Marti and R. Möller, Eds., Photons and Local Probes, NATO ASI Series E: Applied Sciences, Vol. 300, pp. 93–108. Kluwer Academic Publishers, Dordrecht.Google Scholar
  17. 17.
    Pohl, D.W., Denk, W. and Lanz, M. (1984) Optical stethoscopy: Image recording with resolution λ20. Appl. Phys. Lett. 44, 651.ADSCrossRefGoogle Scholar
  18. 18.
    Betzig, E., Isaacson, M. and Lewis, A. (1987) Collection mode near-field scanning optical microscopy. Appl. Phys. Lett. 51, 2088.ADSCrossRefGoogle Scholar
  19. 19.
    Courjon, D., Sarayeddine, K., and Spajer, M. (1989) Scanning tunneling optical microscopy. Optics Commun. 71, 23.ADSCrossRefGoogle Scholar
  20. 20.
    Reddick, R.C., Warmack, R.J., and Ferrell, T.L. (1989) New form of scanning optical microscopy. Phys. Rev. B 39, 767.ADSCrossRefGoogle Scholar
  21. 21.
    Lefevre, H.C. (1980) Single-mode fiber fractional wave devices and polarization controller. Electronics Lett. 16, 778.ADSCrossRefGoogle Scholar
  22. 22.
    Rugar, D., Mamin, H.J., Erlandson, R., Stern, J.E. and Terris, B.D. (1988) Microscope using a fiber-optic displacement sensor. Rev. Sci. Instrum. 59, 2337.ADSCrossRefGoogle Scholar
  23. 23.
    Novotny, L. and Pohl, D.W. (1995) Light propagation in scanning-near field optical microscopy. In O. Marti and R. Möller, Eds., Photons and Local Probes, NATO ASI Series E: Applied Sciences, Vol. 300, pp. 21–33. Kluwer Academic Publishers, Dordrecht.Google Scholar
  24. 24.
    Hafner, Ch. (1990) The Generalized Multiple Multipole Technique for Computational Electromagnetics. Artech, Boston.Google Scholar
  25. 25.
    Taubenblatt, M.A. and Tran, T.K. (1993) Calculation of light scattering from particles and structures on a surface by the coupled-dipole method. J. Opt. Soc. Am. A 10, 912.ADSCrossRefGoogle Scholar
  26. 26.
    Novotny, L., et al. (in preparation).Google Scholar
  27. 27.
    Hecht, B., et al. (in preparation).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • B. Hecht
    • 1
  • D. W. Pohl
    • 1
  • L. Novotny
    • 2
  1. 1.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland
  2. 2.Institut f. Feldtheorie und HöchstfrequenztechnikETH ZürichZürichSwitzerland

Personalised recommendations