Skip to main content

Theory of Imaging in Near-field Microscopy

  • Chapter
Optics at the Nanometer Scale

Part of the book series: NATO ASI Series ((NSSE,volume 319))

Abstract

In the last ten years, several different set-ups for producing images with super resolution by working in the near field have been reported. A good overwiew of the subject can be found in some recent review papers [1-3]. The techniques can be split roughly into two categories. Super-resolution may be obtained by detecting in the far field the light scattered by a small part of the sample under very localized illumination (illumination mode Scanning Near-field Optical Microscope), or, alternatively, by detecting the near field very close to the surface illuminated from the far field (detection mode SNOM). The most efficient way to, produce a localized illumination is the use of coated tapered fibers first introduced by Betzig et al. [4] (see Fig. 1a). Localized detection can be achieved by bringing the narrow tip of an optical fiber close to the surface and detecting the signal coupled into the fiber (see Fig. 1b). Alternatively, a small scatterer may be introduced in the near field so that the scattered light can be detected in the far field (see Fig. 1c). In this paper, we shall discuss the second type of experiments. We shall also restrict the discussion to elastic scattering, thus excluding fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pohl, D.W. (1992) Nano-optics and Scanning Near-Field Optical Microscopy, in R. Wiesendanger and H.J. Güntherodt (eds.), Scanning Tunneling Microscopy II, Springer-Verlag, Berlin, pp. 233–271

    Google Scholar 

  2. Heinzelmann, H. and Pohl, D.W. (1994) Scanning near-field microscopy, Appl. Phys.A 59,89–101

    Google Scholar 

  3. Courjon, D. and Bainier, C. (1994) Near-field microscopy and near-field optics, Rep. Prog. Phys. 57,989–1028.

    Article  ADS  Google Scholar 

  4. Betzig, E., Lewis, A., Harootunian, A., Isaacson, M. and Kratschmer, E. (1986) Near-field scanning optical microscopy. Development and biophysical applications, Biophys. J. 49,269–279

    Article  Google Scholar 

  5. Garcia, N. and Nieto-Vesperinas, M. (1993) Near-Field optics inverse-scattering reconstruction of reflective surfaces, Opt. Lett. 18, 2090–2092.

    Article  ADS  Google Scholar 

  6. Greffet, J.-J., Sentenac, A. and Carminati, R. (1995) Surface profile reconstruction using near field data, Opt. Commun. 116, 20–24.

    Article  ADS  Google Scholar 

  7. Garcia, N. and Nieto-Vesperinas, M. (1995) Direct solution to the inverse scattering problem for surfaces from near-field intensities without phase retrieval, Opt. Lett. 20,949–951.

    Article  ADS  Google Scholar 

  8. Carminati, R., Greffet, J.-J., Garcia, N. and Nieto-Vesperinas, M. (1996) Direct reconstruction of surfaces from near-field intensity under spatially incoherent illumination, Submitted for publication.

    Google Scholar 

  9. Totzeck, M. and Krumbügel, M.A. (1995) Test of various diffraction theories in the near field of phase objects, Ultramicroscopy 57, 160–164.

    Article  Google Scholar 

  10. Totzeck, M. and Krumbügel, M.A. (1994) Lateral resolution in the near field and far field phase images of 7t-phase shifting structures, Opt. Commun. 112, 189–200.

    Article  ADS  Google Scholar 

  11. de Fornel, F., Adam, P.M., Salomon, L., Goudonnet, J.-P., Sentenac, A., Carminati, R. and Greffet, J.-J. (1996) Analysis of the image formation with a Photon Scanning Tunneling Microscope, J. Opt. Soc. Am. A (in press).

    Google Scholar 

  12. Carminati, R. and Greffet, J.J. (1995) Two dimensional numerical simulation of the Photon Scanning Tunneling Microscope. Concept of transfer function, Opt. Commun. 116, 316–321.

    Article  ADS  Google Scholar 

  13. Carminati, R. and Greffet, J.J. (1995) Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface, J. Opt. Soc. Am. A 12, (in press)

    Google Scholar 

  14. Keller, O. (1993) Optical near-field interaction: on the local field inside a quantum tip, in D. W. Pohl and D. Couijon (eds.), Kluwer, Dordrecht, pp. 379–390.

    Google Scholar 

  15. Keller, O. (1994) Optical polarizability of small quatum particles: local-field effects in a self-field approach, J. Opt. Soc. Am. B 11, 1480–1489.

    Article  ADS  Google Scholar 

  16. Keller, O., Xiao, M. and Bozhevolnyi, S. (1994) Optical paramagnetic polarizability of mesoscopic particles: a study of local fields corrections, Opt. Commun. 114,491–500.

    Article  ADS  Google Scholar 

  17. Greffet, J.-J. (1989) Scattering of s-polarized electromagnetic waves by a 2 D obstacle near an interface, Opt. Commun. 72,274–278.

    Article  ADS  Google Scholar 

  18. Pincemin, F., Sentenac, A. and Greffet, J.-J. (1994) Near field scattered by a dielectric rod below a metal surface, J. Opt. Soc. Am. A 11,1117–1127.

    Article  ADS  Google Scholar 

  19. Martin, O.J.F., Dereux, A. and Girard, C. (1994) Iterative scheme for computing exactly the total field propagating in dielectric structures of arbitrary shape, J. Opt. Soc. Am. A 11,1073–1080.

    Article  ADS  Google Scholar 

  20. Girard, C. and Bouju, X. (1991) Coupled electromagnetic modes between a corrugated surface and a thin probe tip, J. Chem. Phys. 3, 2056–2064.

    Article  ADS  Google Scholar 

  21. Girard, C. and Courjon, D. (1990) Model for scanning tunneling optical microsocpy: A microscopic self-consistent approach, Phys. Rev. B 42,9340–9349.

    Article  ADS  Google Scholar 

  22. Lakhtakia, A. (1990) Macroscopic theory of the coupled dipole approximation method, Opt. Commun. 79,1–5.

    Article  ADS  Google Scholar 

  23. Agarwal, G.S. (1976) Integral equation treatment of scattering from rough surfaces, Phys. Rev. B 14, 846–848.

    Article  MathSciNet  ADS  Google Scholar 

  24. Agarwal, G.S. (1977) Interaction of electromagnetic waves at rough dielectric surfaces, Phys. Rev. B 15, 2371–2383

    Article  ADS  Google Scholar 

  25. Maradudin, A.A. and Mills, D.L. (1975) Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness, Phys. Rev. B 11, 1392–1415.

    Article  ADS  Google Scholar 

  26. Kröger, E. and Kretschmann, E. (1970) Scattering of light by slightly rough surfaces or thin films including plsma resonance emission, Z. Physik 237, 1–15.

    Article  ADS  Google Scholar 

  27. Nieto-Vesperinas, M. (1982) Depolarization of electromagnetic waves scattered from slightly rough random surfaces: a study by means of the extinction theorem, J. Opt. Soc. Am. 72, 539–547

    Article  MathSciNet  ADS  Google Scholar 

  28. Greffet, J.-J. (1988) Scattering of electromagnetic waves by rough dielectric surfaces, Phys. Rev. B 37, 6436–6441.

    Article  ADS  Google Scholar 

  29. Barchiesi, D. and Van Labeke, D. (1992) Scanning tunneling optical microscopy (STOM): Theoretical study of polarization effects with two models of tip, in D.W. Pohl and D. Couijon (eds.), Near Field Optics, Kluwer, Dordrecht, pp. 179–188.

    Google Scholar 

  30. Van Labeke, D. and Barchiesi, D. (1992) Scanning-tunneling optical microscopy: a theoretical macroscopic approach, J. Opt. Soc. Am. A 9,732–739.

    Article  ADS  Google Scholar 

  31. Greffet, J.-J. and Carminati, R. (1996) Relationship between the near field speckle pattern and the statistical properties of a surface, Ultramicroscopy (in press).

    Google Scholar 

  32. Sentenac, A. and Greffet, J.J. (1995) Study of the features of PSTM images by means of a perturbative approach., Ultramicroscopy 57, 246–250

    Article  Google Scholar 

  33. van Labeke, D. and Barchiesi, D. (1993) Theoretical problems in scanning near-field optical microscopy, in D.W. Pohl and D. Couijon (eds.), Near Field Optics, Kluwer, Dordrecht, pp. 157–178

    Google Scholar 

  34. de Fornel, F., Bourillot, E., Adam, P., Salomon, L., Chabrier, G. and Goudonnet, J.P. (1993) Recent experimental results with the PSTM: Observation of a step on a quartz surface. Spatial spectroscopy of microwaveguides, in D. W. Pohl and D. Couijon (eds.), Near Field Optics, Kluwer, Dordrecht, pp. 59–70.

    Google Scholar 

  35. Bainier, Courjon, D. and Baida, F. (1995) Evanescent interferometry by scanning optical tunneling detection, J. Opt. Soc. Am. A to be published.

    Google Scholar 

  36. Gleyzes, P., Boccara, A.C. and Bachelot, R. (1995) Near field optical microscopy using a metallic vibrating tip, Ultramicroscopy 57, 318–322.

    Article  Google Scholar 

  37. Bachelot, R., Gleyzes, P. and Boccara, A.C. (1995) Near-Field optical microscope based on local perturbation of a diffraction spot, Opt. Lett. 20, 1924–1926

    Article  ADS  Google Scholar 

  38. Zenhausern, F., O’Boyle, M.P. and Wickramasinghe, H.K. (1994) Apertureless near-field microscope, Appl. Phys. Lett. 65, 1623–1625.

    Article  ADS  Google Scholar 

  39. Kawata, S. and Inouye, Y. (1995) Scanning probe optical microscopy using a metallic probe tip, Ultramicroscopy 57, 313–317

    Article  Google Scholar 

  40. Chabrier, G., de Fornel, F., Bourillot, E., Salomon, L. and Goudonnet, J.-P. (1994) A dark field scanning tunneling microscope under incoherent light illumination, Opt. Commun. 107, 347–352

    Article  ADS  Google Scholar 

  41. Bozhevolnyi, S., Smolyaninov, I.I. and Zayats, A.V. (1995) Near-field microscopy of surface-plasmon polaritons: localization and internal interface imaging, Phys. Rev. B 51, 17916–17924.

    Article  ADS  Google Scholar 

  42. Bozhevolnyi, S., Vohnsen, B., Smolyaninov, I.I. and Zayats, A.V. (1995) Direct observation of surface polariton localization caused by surface roughness, Opt. Commun. 117,417–423

    Article  ADS  Google Scholar 

  43. Dawson, P., Smith, K.W., de Fornel, F. and Goudonnet, J.-P. (1995) Imaging of surface plasmon launch and propagation using a photon scanning tunneling microscope, Ultramicroscopy 57, 287–292.

    Article  Google Scholar 

  44. de Fornel, F., Adam, P.M., Salomon, L., Goudonnet, J.P. and Guérin, P. (1994) Effect of the coherence of the sources on the images obtained with a Photon Scanning Tunneling Microscope, Opt. Lett 19, 14–17.

    Google Scholar 

  45. Toledo-Crow, R., Smith, B.W., Rogers, J.K. and Vaez-Iravani, M. (1994) Near Field Optical Microscopy Characterization of IC Metrology, S.P.I.E. 2196, 62–73

    Google Scholar 

  46. Maradudin, A.A., Michel, T., McGurn, A.R. and Mendez, E.R. (1990) Enhanced backscattering of light from a random grating, Ann. Phys. (N.Y.) 203, 255–307.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Greffet, JJ., Carminati, R. (1996). Theory of Imaging in Near-field Microscopy. In: Nieto-Vesperinas, M., García, N. (eds) Optics at the Nanometer Scale. NATO ASI Series, vol 319. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0247-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0247-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6594-8

  • Online ISBN: 978-94-009-0247-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics