Long Wavelength Oscillatory Instability in Binary Fluids

  • T. Clune
  • M. C. Depassier
  • E. Knobloch
Part of the Nonlinear Phenomena and Complex Systems book series (NOPH, volume 1)

Abstract

Binary fluid convection takes the form of oscillations for sufficiently negative separation ratios. When the confining plates are of poor thermal conductivity these oscillations have a long wavelength. Nonlinear planform equations governing the resulting instability are derived for both two and three dimensions. The technique uses a multiple scale analysis combined with reconstitution. The validity of the resulting equations is discussed and compared with asymptotically exact alternatives. The results are found to differ demonstrating the failure of the reconstitution procedure.

Keywords

Rayleigh Number Hopf Bifurcation Biot Number Critical Rayleigh Number Heteroclinic Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V.I. Arnol’d, Functional Anal. and Appliecs. 11, 85 (1977).MATHCrossRefGoogle Scholar
  2. [2]
    T. Clune and E. Knobloch, Physica D, in press (1994).Google Scholar
  3. [3]
    P. Collet and J.-P. Eckmann, Commun. Math. Phys. 132, 139–153 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    P. Collet and J.-P. Eckmann, Nonlinearity 5, 1265–1302 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    S. Cox, J. Eng. Math., in press (1994).Google Scholar
  6. [6]
    S. Cox and S. Leibovich, preprint (1994).Google Scholar
  7. [7]
    J. Guckenheimer and E. Knobloch, Geophys. Astrophys. Fluid Dyn. 23, 247–272 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    A. van Harten, J. Nonlinear Sci. 1, 397–422 (1991).MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    E. Knobloch, Phys. Rev. A 40, 1549–1559 (1989).ADSCrossRefGoogle Scholar
  10. [10]
    E. Knobloch, in Pattern Formation in Complex Dissipative Systems, S. Kai, ed., World Scientific, Singapore, pp. 263–274 (1992).Google Scholar
  11. [11]
    E. Knobloch and J. De Luca, Nonlinearity 3, 975–980 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    E. Knobloch and M.R.E. Proctor, J. Fluid Mech. 108, 291–316 (1981).MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    L. Pismen, Phys. Rev. A 38, 2564–2572 (1988).ADSCrossRefGoogle Scholar
  14. [14]
    Y. Renardy, Phys. Fluids A 5, 1376–1389 (1993).MathSciNetADSMATHCrossRefGoogle Scholar
  15. [15]
    M. Roberts, J.W. Swift and D. Wagner, Contemp. Math. 56, 283–318 (1986).MathSciNetGoogle Scholar
  16. [16]
    G. Schneider, J. Nonlinear Sci. 4, 23–34 (1994).MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    M. Silber and E. Knobloch, Nonlinearity 4, 1063–1106 (1991).MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    J.W. Swift (1984), Ph.D. Thesis, University of California, Berkeley.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 1996

Authors and Affiliations

  • T. Clune
    • 1
  • M. C. Depassier
    • 2
  • E. Knobloch
    • 3
  1. 1.JILAU. of ColoradoBoulderUSA
  2. 2.Facultad de FísicaU. Católica de ChileSantiago 22Chile
  3. 3.Department of PhysicsU. of CaliforniaBerkeleyUSA

Personalised recommendations