Nonlinear Behavior and Trapped Dynamics in the Micromaser

  • E. Lazo
  • J. C. Retamal
  • C. Saavedra
Part of the Nonlinear Phenomena and Complex Systems book series (NOPH, volume 1)

Abstract

We study the semiclassical limit of the quantum dynamics of a micromaser which provides a return map of the intracavity electromagnetic field. We consider atoms injected inside the microwave cavity in a coherent superposition. We found bifurcations, chaos, and transitions between bifurcation sequences in a broad range of the parameter space. In particular, we study the map as a function of the coherence parameter which allows the field to reach chaotic behavior in a lossless cavity. In addition, we propose an experimental setup to detect some nonlinear features of the field by simulating a measurement process of the atomic level populations when the atoms leave the cavity.

Keywords

Internal Field Semiclassical Limit Coherence Parameter Atomic Coherence Unstable Fixed Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Meystre and E.M. Wright, “Chaos, Noise and Fractals”, edited by M. Pike and L.A. Lugiato. Malvern physics series Adam Jlilguor 1987.Google Scholar
  2. [2]
    Juan C. Retamal, Carlos Saavedra, and Edmundo Lazo, Phys. Rev. A 48, 2482(1993). Edmundo Lazo, Juan C. Retamal, and Carlos Saavedra (submitted to Opt. Communications)ADSCrossRefGoogle Scholar
  3. [3]
    R. Bonifacio, (J.M. D’Ariano, R. Seno Storpi Phys. Rev A 47, R2464(1993).ADSCrossRefGoogle Scholar
  4. [4]
    The typical values for these parameters are: f ~, 10-5s and tp~ 103s, thus the time between two consecutive atoms is essentially tp.Google Scholar
  5. [5]
    E.T. Jaynes and F.W. Cummings, Pro. IEEE 51, 89(1963).CrossRefGoogle Scholar
  6. [6]
    M. Sargent, M.O. Scully, W. Lamb, “Laser Physics”, Adison Wesley, 1970Google Scholar
  7. [7]
    F.X. Zhao, M. Orszag, J. Bergou and S.Y. Zhu, Phys. lett. A 137, 471 (1989).ADSCrossRefGoogle Scholar
  8. [8]
    R.V. Jensen, and E.R, Jessup, J. Stat. Phys. 43, 369(1986).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • E. Lazo
    • 1
  • J. C. Retamal
    • 2
  • C. Saavedra
    • 1
  1. 1.Departamento de Física, Facultad de CienciasUniversidad de TarapacáAricaChile
  2. 2.Departamento de FísicaUniversidad de SantiagoSantiagoChile

Personalised recommendations