Concerning the Noise Strength in Periodically Driven Pattern Convection

  • M. O. Cáceres
Part of the Nonlinear Phenomena and Complex Systems book series (NOPH, volume 1)


In this paper we consider the influence of color noise on periodically driven pattern formation. The issue of the huge noise strength necessary to fit the experimental data, in periodically driven Rayleigh-Béenard convection, is studied by introducing a non-Markovian amplitude equation. Projector operator techniques are used to eliminate the fast variables, thus in first approximation an analytic expression for the order-disorder transition line is obtained. The fit with experiment is shown to be satisfactory (for a realistic thermal noise strength) provided the Langevin term has a correlation time tc of the order 1/w.


Nusselt Number Rayleigh Number Fast Variable Amplitude Equation Noise Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.Chandrasekhar (1961) ’Hydrodynamic and Hydromagnetic Stability’, Clarendon, Oxford.Google Scholar
  2. [2]
    Landau L.D. and Lifshitz E.M. (1959) ’Fluid Mechanics’ Addison-Wesley, Reading, MA.Google Scholar
  3. [3]
    Swift J.B. and Hohenberg P.C. (1977) ’Hydrodynamic fluctuations at the convective instability’, Phys. Rev. A, 15, 319.ADSCrossRefGoogle Scholar
  4. [4]
    Hohenberg P.C. and Swift J.B. (1992) ’Effects of external noise at the onset of Raleigh-Bwnard convection’, Phys. Rev. A, 46, 4773.ADSCrossRefGoogle Scholar
  5. [5]
    Graham R. (1974) ’Hydrodynamic fluctuation near the convective instability’, Phys. Rev. A; 10, 1762.ADSCrossRefGoogle Scholar
  6. [6]
    Ahlers G., Cross M.C., Hohenberg P.C., and Safran S. (1981) The amplitude equation near the convective threshold: application to time-dependent experiments’, J. Fluid Mech. 110, 297.ADSzbMATHCrossRefGoogle Scholar
  7. [7]
    vanBeijeren H. and Cohen E.G.D. (1988) ’The effects of thermal noise in a Rayleigh-Bwnard cell near its first convective instability’ , J. Stat. Phys. 53, 77.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    (a) Meyer C.W., Cannell D.S. and Ahlers G. (1992) ’Hexagonal and Roll flow patterns in temporally modulated Rayleigh-Bwnard convection’, Phys. Rev. A. 45, 8583ADSCrossRefGoogle Scholar
  9. [8]
    (b) Meyer C.W., Ahlers G. and Cannell D.S. (1991), ’Stochastic influences on pattern formation in Rayleigh-Bwnard convection: Ramping experiments’, Phys. Rev. A 44, 2514ADSCrossRefGoogle Scholar
  10. [8]
    (c) Meyer C.W., Ahlers G. and Cannell D.S. (1987) ’Initial stages of pattern formation in Rayleigh-Bwnard convection’, Phys. Rev. Lett. 59, 1577.ADSCrossRefGoogle Scholar
  11. [9]
    Stiller O., A. Becker, and L. Kramer (1992) ’Noise-induced transition between attractors in time-periodically driven systems’ Phys. Rev. Lett. 68, 3670.ADSCrossRefGoogle Scholar
  12. [10]
    (a) van Kampen N.G. (1985) ’Elimination of fast variables’, Phys. Rep. 124, 69–160, (1985);MathSciNetADSCrossRefGoogle Scholar
  13. [10]
    (b) idem (1989) ’Langevin-Like equation with colored noise’, J. Stat. Phys. 54, 1289.MathSciNetADSCrossRefGoogle Scholar
  14. [11]
    Gardiner C.W. (1983) ’Handbook of stochastic methods’, Springer-Verlag, Berlin.zbMATHGoogle Scholar
  15. [12]
    de Pasquale F., Rack Z., San Miguel M., and Tartaglia P. (1984) ’Fluctuations and limit of metastability in a periodically driven unstable system’, Phys. Rev. B, 30, 5228.ADSCrossRefGoogle Scholar
  16. [13]
    Swift J.B. and Hohenberg P.C. (1988) ’Comment on Initial stages of pattern formation in Rayleigh-Bwnard convection’, Phys. Rev. Lett. 60, 75.ADSCrossRefGoogle Scholar
  17. [14]
    Becker A., Caceres M.O. and Kramer L. (1992) ’Correlation function in stochastic periodically driven instabilities’, Phys. Rev. A, 46, R4463.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. O. Cáceres
    • 1
  1. 1.Centro Atomico Bariloche and Instituto BalseiroComision Nacional de Energia Atomica, Universidad Nacional de CuyoRio NegroArgentina

Personalised recommendations