Skip to main content

Stationary Convention Due to Resistivity and Viscosity in a Cylindrycal Plasma with a Free Boundary

  • Chapter
Instabilities and Nonequilibrium Structures V

Part of the book series: Nonlinear Phenomena and Complex Systems ((NOPH,volume 1))

  • 116 Accesses

Abstract

Large scale stationary convection due to viscosity and resistivity in a current-carrying cylindrical plasma with a free boundary is investigated. By using the magnetohydrodynamic (MHD) equations, it is shown that there are four states which are both marginal and stationary. These states are the plasma analog of stationary convection in ordinary hydrodynamics. Therefore, it is possible to define the critical Rayleigh number which characterizes the onset of steady convection. For Rayleigh numbers larger than the critical number, the whole nonlinear set of MHD equations possesses convective stationary solutions which bifurcate from the equilibrium solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simon, A. (1968) ’Convection in a weakly ionized plasma in a non-uniform magnetic field’, Phys. Fluids 11, 1186–1191.

    Article  ADS  Google Scholar 

  2. Kadomtsev, B. and Pogutse, O. (1970) ’Turbulence in toroidal plasmas’ in M. Leontovich (ed.), Reviews of Plasma Physics, Plenum Press, New York, Vol 5, pp. 349–498.

    Google Scholar 

  3. Okuda, H. and Dawson, J.M. (1973) ’Theory and numerical simulations in plasma diffusion across a magnetic filed’, Phys. Fluids, 16, 408–426.

    Article  ADS  Google Scholar 

  4. Roberts, H. and Taylor, J.B. (1965) ’Gravitational resistive instability of an incompressible plasma in a sheared magnetic field’, Phys. Fluids 8, 315–322.

    Article  ADS  Google Scholar 

  5. H.Wobig (1972) ’Convection of a plasma in a gravitational field’, Plasma Phys. 14, 403–416.

    Google Scholar 

  6. E.K.Maschke and R.B.Paris (1973) in Proceedings of the Sixth European Conference on Controlled Fusion and Plasma Physics, Moscow, Vol 1, p. 205.

    Google Scholar 

  7. Dagazian, R.Y. and Paris, R.B. (1977) ’Stationary convection-like modes in a plasma slab with magnetic shear’, Phys. Fluids 20, 917–927.

    Article  ADS  Google Scholar 

  8. Gomberoff, L. and Mashke, E.K. (1981) ’Non-Ideal Effects on the Stability of a Current-Carrying Plasma’, in E. Tirapegui (ed.), Field Theory, Quantization, Reidel, New York, pp. 123–145.

    Google Scholar 

  9. Gomberoff, L. and Hernandez, M. (1983) ’Stationary convection in a cylindrical plasma’, Phys. Rev., A27, 1244–1246.

    MathSciNet  ADS  Google Scholar 

  10. Gomberoff, L. and Hernandez, M. (1984) ’Large-scale stationary convection in a cylindrical current-currying plasma’, Phys. Fluids 27, 392–398.

    Article  ADS  MATH  Google Scholar 

  11. Gomberoff, L. (1984) ’Resistive convection in a cylindrical plasma’, J. Plasma Phys. 31, 29–37.

    Article  ADS  Google Scholar 

  12. Gomberoff, L. (1985) ’Resistive convection in a cylindrical plasma. Part 2’, J. Plasma Phys. 34, 299–303.

    Article  ADS  Google Scholar 

  13. Gomberoff, L. (1989) ’Resistive convection in, a current-carrying cylindrical plasma: An exact model, Phys. Fluids B 1, 10, 2126–2128.

    Article  ADS  Google Scholar 

  14. Gomberoff, L. (1991) ’An exact model of resistive convection in a cylindricla plasma’, in E. Tirapegui and W. Zellers (eds.), Instabilities and Nonequilibrium Structures III, Klubers Academic Publishers, The Netherlands, pp. 307–316.

    Chapter  Google Scholar 

  15. Gomberoff, L. (1983) ’Resistive and viscous convection in a cylindrical plasma’, Phys. Rev. A 28, 3125–3127.

    Article  MathSciNet  ADS  Google Scholar 

  16. Gomberoff, L. and Palma, G. (1984) ’Stationary convection due to resistivity, viscosity, and thermal conductivity in a cylindrical plasma’, Phys. Fluids 27, 2022–2027

    Article  ADS  MATH  Google Scholar 

  17. Gomberoff, K. and Gomberoff, L. (1992) ’Effect of Hall currents on the steady convection of a current-carrying cylindrical plasma Phys. Fluids B 4, 3024–3030.

    Article  ADS  Google Scholar 

  18. dosSantos, C.A.M. and Galvao, R.M.O. (1992) ’Influence of the Hall effect on convection in plasmas, Phys. Fluids, B 4, 4187–4189.

    Article  Google Scholar 

  19. Shaper, U. (1983) ’Stabilizing and distabilizing influence of the Hall effect an a Z pinch with a step-like colume current profile’, J. Plasma Phys. 30, 169–178.

    Article  ADS  Google Scholar 

  20. Shaper, U. (1983) ’On the influence of the Hall effect on the spectrum of the ideal magnetohydrodinamic cylindrilcal pinch’, J. Plasma Phys. 29, 1–19.

    Article  ADS  Google Scholar 

  21. Gomberoff, L. and Gomberoff, K (1992) ’Convection in a cylindrical plasma with a free boundary’, Phys. Fluids B 4, 1428–1431.

    Google Scholar 

  22. Gomberoff, L. (1994) ’Stationary convection in a cylindrical plasma’, Phys. Rev. A (submitted for publication).

    Google Scholar 

  23. Braginskii, S.I. (1965) Reviews in plasma Physics, Leontovich (consultant Bureau, New York, 1965), Vol. 1, p. 205.

    Google Scholar 

  24. Shafranov, V.D. (1958) ’The instability of a plasma column with a distributed current’, in Plasma Physics and the Problem of Controlled Thermonuclear Research, Pergamon Press, New York, Vol. 2, pp. 71–80.

    Google Scholar 

  25. Friedberg, J.P. (1970) ’Magnetohydrodynamic Stability of a Diffuse Screw Pinch’, Phys. Fluids 13, 1812–1818.

    Article  ADS  Google Scholar 

  26. Goedbloed, J.P. and Hagebeuk, H.J.L. (1972) ’Growth Rates of Instabilities od a Diffuse Linear Pinch’, Phys. Fluids 15, 1090–1101.

    Article  ADS  Google Scholar 

  27. Coppins, M., Bond, D.J., and Haines, M.G. (1984) ’A study of the stability of a Z pinch under fusion conditions using the Hall fluid model’, Phys. Fluids, 27, 2886–2889.

    Article  ADS  Google Scholar 

  28. Chandrasekhar, S. (1961) Hydrodynamics and Hydromagnetic Stability, Oxford University Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gomberoff, L. (1996). Stationary Convention Due to Resistivity and Viscosity in a Cylindrycal Plasma with a Free Boundary. In: Tirapegui, E., Zeller, W. (eds) Instabilities and Nonequilibrium Structures V. Nonlinear Phenomena and Complex Systems, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0239-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0239-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6590-0

  • Online ISBN: 978-94-009-0239-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics