Advertisement

Stationary Convention Due to Resistivity and Viscosity in a Cylindrycal Plasma with a Free Boundary

  • L. Gomberoff
Part of the Nonlinear Phenomena and Complex Systems book series (NOPH, volume 1)

Abstract

Large scale stationary convection due to viscosity and resistivity in a current-carrying cylindrical plasma with a free boundary is investigated. By using the magnetohydrodynamic (MHD) equations, it is shown that there are four states which are both marginal and stationary. These states are the plasma analog of stationary convection in ordinary hydrodynamics. Therefore, it is possible to define the critical Rayleigh number which characterizes the onset of steady convection. For Rayleigh numbers larger than the critical number, the whole nonlinear set of MHD equations possesses convective stationary solutions which bifurcate from the equilibrium solution.

Keywords

Free Boundary Rayleigh Number Equilibrium Solution Plasma Phys Convection Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simon, A. (1968) ’Convection in a weakly ionized plasma in a non-uniform magnetic field’, Phys. Fluids 11, 1186–1191.ADSCrossRefGoogle Scholar
  2. 2.
    Kadomtsev, B. and Pogutse, O. (1970) ’Turbulence in toroidal plasmas’ in M. Leontovich (ed.), Reviews of Plasma Physics, Plenum Press, New York, Vol 5, pp. 349–498.Google Scholar
  3. 3.
    Okuda, H. and Dawson, J.M. (1973) ’Theory and numerical simulations in plasma diffusion across a magnetic filed’, Phys. Fluids, 16, 408–426.ADSCrossRefGoogle Scholar
  4. 4.
    Roberts, H. and Taylor, J.B. (1965) ’Gravitational resistive instability of an incompressible plasma in a sheared magnetic field’, Phys. Fluids 8, 315–322.ADSCrossRefGoogle Scholar
  5. 5.
    H.Wobig (1972) ’Convection of a plasma in a gravitational field’, Plasma Phys. 14, 403–416.Google Scholar
  6. 6.
    E.K.Maschke and R.B.Paris (1973) in Proceedings of the Sixth European Conference on Controlled Fusion and Plasma Physics, Moscow, Vol 1, p. 205.Google Scholar
  7. 7.
    Dagazian, R.Y. and Paris, R.B. (1977) ’Stationary convection-like modes in a plasma slab with magnetic shear’, Phys. Fluids 20, 917–927.ADSCrossRefGoogle Scholar
  8. 8.
    Gomberoff, L. and Mashke, E.K. (1981) ’Non-Ideal Effects on the Stability of a Current-Carrying Plasma’, in E. Tirapegui (ed.), Field Theory, Quantization, Reidel, New York, pp. 123–145.Google Scholar
  9. 9.
    Gomberoff, L. and Hernandez, M. (1983) ’Stationary convection in a cylindrical plasma’, Phys. Rev., A27, 1244–1246.MathSciNetADSGoogle Scholar
  10. 10.
    Gomberoff, L. and Hernandez, M. (1984) ’Large-scale stationary convection in a cylindrical current-currying plasma’, Phys. Fluids 27, 392–398.ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Gomberoff, L. (1984) ’Resistive convection in a cylindrical plasma’, J. Plasma Phys. 31, 29–37.ADSCrossRefGoogle Scholar
  12. 12.
    Gomberoff, L. (1985) ’Resistive convection in a cylindrical plasma. Part 2’, J. Plasma Phys. 34, 299–303.ADSCrossRefGoogle Scholar
  13. 13.
    Gomberoff, L. (1989) ’Resistive convection in, a current-carrying cylindrical plasma: An exact model, Phys. Fluids B 1, 10, 2126–2128.ADSCrossRefGoogle Scholar
  14. 14.
    Gomberoff, L. (1991) ’An exact model of resistive convection in a cylindricla plasma’, in E. Tirapegui and W. Zellers (eds.), Instabilities and Nonequilibrium Structures III, Klubers Academic Publishers, The Netherlands, pp. 307–316.CrossRefGoogle Scholar
  15. 15.
    Gomberoff, L. (1983) ’Resistive and viscous convection in a cylindrical plasma’, Phys. Rev. A 28, 3125–3127.MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Gomberoff, L. and Palma, G. (1984) ’Stationary convection due to resistivity, viscosity, and thermal conductivity in a cylindrical plasma’, Phys. Fluids 27, 2022–2027ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Gomberoff, K. and Gomberoff, L. (1992) ’Effect of Hall currents on the steady convection of a current-carrying cylindrical plasma Phys. Fluids B 4, 3024–3030.ADSCrossRefGoogle Scholar
  18. 18.
    dosSantos, C.A.M. and Galvao, R.M.O. (1992) ’Influence of the Hall effect on convection in plasmas, Phys. Fluids, B 4, 4187–4189.CrossRefGoogle Scholar
  19. 19.
    Shaper, U. (1983) ’Stabilizing and distabilizing influence of the Hall effect an a Z pinch with a step-like colume current profile’, J. Plasma Phys. 30, 169–178.ADSCrossRefGoogle Scholar
  20. 20.
    Shaper, U. (1983) ’On the influence of the Hall effect on the spectrum of the ideal magnetohydrodinamic cylindrilcal pinch’, J. Plasma Phys. 29, 1–19.ADSCrossRefGoogle Scholar
  21. 21.
    Gomberoff, L. and Gomberoff, K (1992) ’Convection in a cylindrical plasma with a free boundary’, Phys. Fluids B 4, 1428–1431.Google Scholar
  22. 22.
    Gomberoff, L. (1994) ’Stationary convection in a cylindrical plasma’, Phys. Rev. A (submitted for publication).Google Scholar
  23. 23.
    Braginskii, S.I. (1965) Reviews in plasma Physics, Leontovich (consultant Bureau, New York, 1965), Vol. 1, p. 205.Google Scholar
  24. 24.
    Shafranov, V.D. (1958) ’The instability of a plasma column with a distributed current’, in Plasma Physics and the Problem of Controlled Thermonuclear Research, Pergamon Press, New York, Vol. 2, pp. 71–80.Google Scholar
  25. 25.
    Friedberg, J.P. (1970) ’Magnetohydrodynamic Stability of a Diffuse Screw Pinch’, Phys. Fluids 13, 1812–1818.ADSCrossRefGoogle Scholar
  26. 26.
    Goedbloed, J.P. and Hagebeuk, H.J.L. (1972) ’Growth Rates of Instabilities od a Diffuse Linear Pinch’, Phys. Fluids 15, 1090–1101.ADSCrossRefGoogle Scholar
  27. 27.
    Coppins, M., Bond, D.J., and Haines, M.G. (1984) ’A study of the stability of a Z pinch under fusion conditions using the Hall fluid model’, Phys. Fluids, 27, 2886–2889.ADSCrossRefGoogle Scholar
  28. Chandrasekhar, S. (1961) Hydrodynamics and Hydromagnetic Stability, Oxford University Press, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • L. Gomberoff
    • 1
  1. 1.Departamento de Física Facultad de CienciasUniversidad de ChileSantiagoChile

Personalised recommendations