Advertisement

Internal Physics of Black Holes: Recent Developments

  • Werner Israel
Part of the Mathematical and Physical Sciences book series (ASIC, volume 476)

Abstract

Surely there is nothing which more plainly invites ridicule than the study of black hole interiors. No matter what happens inside the hole, we can never observe it, nor will it affect anything we can observe. Penrose’s famous 1965 theorem assures the presence of a (classical) singularity internally, signalling a breakdown of all the laws of physics. Finally, “hair” (irregularities) swept into the hole at the time of collapse will surely pile up, producing a state of internal chaos. On the face of it, this hardly seems a topic for serious scientists of sound views.

Keywords

Black Hole Event Horizon Einstein Field Equation Cauchy Horizon Retarded Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poisson, E. and Israel, W. (1990) Phys. Rev. D41, 1796.ADSMathSciNetGoogle Scholar
  2. 2.
    Ori, A. (1991) Phys. Rev. Letters 67, 789.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bonanno, A., Droz, S., Israel, W. and Morsink, S. M. (1994) Phys. Rev. D50, 755; (1995) Proc. Roy. Soc. A450, 553.MathSciNetGoogle Scholar
  4. 4.
    Brady, P. R. and Smith, J. D. (1995) Phys. Rev. Letters 75 1256.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Israel, W. (1993) The internal constitution of black holes, in N. Sanchez and A. Zichichi (eds.), Current Topics in Astrofundamental Physics World Scientific, Singapore, pp. 430–448. [Note typographical omission of factor v p in first of eqns. (8).]Google Scholar
  6. 6.
    Droz, S., Israel, W. and Morsink, S. M. (1996) Physics World (in press).Google Scholar
  7. 7.
    Bonanno, A., Droz, S., Israel, W. and Morsink, S. M. (1994) Can. J. Phys. 72, 755; erratum. (1995) Can. J. Phys. 73, 251.ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hiscock, W. A. (1981) Physics Letters 83A, 110.ADSMathSciNetGoogle Scholar
  9. 9.
    Gnedin, M. L. and Gnedin, N. Y. (1993) Class Quantum Grav. 10 1083.ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ori, A. (1992) Phys. Rev. Letters 68 2117.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Brady, P. R. and Chambers, C. M. (1995) Phys. Rev. D51 4177.ADSMathSciNetGoogle Scholar
  12. 12.
    Brady, P. R., Droz, S., Israel, W. and Morsink, S. M. (1995), paper in preparation.Google Scholar
  13. 13.
    Yurtsever, U. (1993) Class. Quantum Grav. 10 117.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Flanagan, E. and Ori, A. (1995), preprint.Google Scholar
  15. 15.
    Arnowitt, R., Deser, S., Misner, C. W. (1962) Gravitation: an Introduction to Current Research (L. Witten ed.) Wiley, New York, Chap 7.Google Scholar
  16. 16.
    Geroch, R., Held, A. and Penrose, R. (1973), J. Math. Phys. 14 874.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    d’Inverno, R. A. and Smallwood, J. (1980), Phys. Rev. D22 1233.ADSMathSciNetGoogle Scholar
  18. 18.
    Hayward, S. A. (1994) Class. Quantum Grav. 11, 3025.ADSzbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Brady, P. R., Droz, S., Israel, W. and Morsink, S. M. (1995) Class. Quantum Grav. (in press).Google Scholar
  20. 20.
    Brady, P. R., Droz, S., Israel, W. and Morsink, S. M. (1995), paper in preparation.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Werner Israel
    • 1
  1. 1.Canadian Institute for Advanced Research Cosmology Program, Theoretical Physics InstituteUniversity of AlbertaEdmontonCanada

Personalised recommendations