Advertisement

Strings and Multi-Strings in Black Hole and Cosmological Spacetimes

  • A. L. Larsen
  • N. Sánchez
Part of the Mathematical and Physical Sciences book series (ASIC, volume 476)

Abstract

Recent results on classical and quantum strings in a variety of black hole and cosmological spacetimes, in various dimensions, are presented. The curved backgrounds under consideration include the 2 + 1 black hole anti de Sitter spacetime and its dual, the black string, the ordinary D ≥ 4 black holes with or without a cosmological constant, the de Sitter and anti de Sitter spacetimes and static Robertson-Walker spacetimes. Exact solutions to the string equations of motion and constraints, representing circular strings, stationary open strings and dynamical straight strings, are obtained in these backgrounds and their physical properties (length, energy, pressure) are described. The existence of multi-string solutions, describing finitely or infinitely many strings, is shown to be a general feature of spacetimes with a positive or negative cosmological constant. Generic approximative solutions are obtained using the string perturbation series approach, and the question of the stability of the solutions is addressed.

Furthermore, using a canonical quantization procedure, we find the string mass spectrum in de Sitter and anti de Sitter spacetimes. New features as compared to the string spectrum in flat Minkowski spacetime appear, for instance the fine-structure effect at all levels beyond the graviton in both de Sitter and anti de Sitter spacetimes, and the non-existence of a Hagedorn temperature in anti de Sitter spacetime. We discuss the physical implications of these results. Finally, we consider the effect of spatial curvature on the string dynamics in Robertson-Walker spacetimes.

Keywords

Black Hole Black String String Solution Circular String String Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.J. de Vega and N. Sanchez, Phys. Rev. D42 (1990) 3969.ADSGoogle Scholar
  2. H.J. de Vega, M. Ramón-Medrano and N.Sánchez, Nucl. Phys. B374(1992) 405CrossRefADSGoogle Scholar
  3. [2]
    H.J. de Vega and N. Sánchez, Phys. Lett. B244 (1990) 215, Phys. Rev. Lett. 65C (1990) 1517, IJMP A7 (1992) 3043, Nucl. Phys. B317 (1989) 706 and ibid 731.ADSGoogle Scholar
  4. D. Amati and C. Klimcik, phys. Lett. B210 (1988) 92.MathSciNetADSGoogle Scholar
  5. M. Costa and H. J. de Vega, Ann. Phys. 211 (1991) 223 and ibid 235.zbMATHCrossRefADSGoogle Scholar
  6. C. Lóusto and N. Sánchez, Phys. Rev. D46 (1992) 4520ADSGoogle Scholar
  7. [3]
    V.E. Zakharov and A.V. Mikhailov, JETP 47 (1979) 1017.H. Eichenherr, in ‘Integrable Quantum Field Theories’, ed. J. Hietarinta and C. Montonen (Springer, Berlin, 1982).ADSGoogle Scholar
  8. [4]
    H.J. de Vega and N. Sánchez, Phys. Rev. D47 (1993) 3394.ADSGoogle Scholar
  9. [5]
    I. Bars and K. Sfetsos, Mod. Phys. Lett. A7 (1992) 1091.MathSciNetADSGoogle Scholar
  10. [6]
    H.J. de Vega, J.R. Mittelbrunn, M.R. Medrano and N. Sánchez, Phys. Lett. B232 (1994) 133 and ‘The Two-Dimensional Stringy Black Hole: a new Approach and a Pathology’, PAR-LPTHE 93/14.Google Scholar
  11. [7]
    H.J. de Vega and N. Sánchez, Phys. Lett. B197 (1987) 320.ADSGoogle Scholar
  12. [8]
    H.J. de Vega and N. Sánchez, Nucl. Phys. B299 (1988) 818.CrossRefADSGoogle Scholar
  13. [9]
    P.F. Mende, in ‘String Quantum Gravity and Physics at the Planck Energy Scale’. Proceedings of the Erice Workshop held in June 1992, ed. N. Sánchez (World Scientific, 1993).Google Scholar
  14. [10]
    A.L. Larsen and V.P. Frolov, Nucl. Phys. B414 (1994) 129.CrossRefMathSciNetADSGoogle Scholar
  15. [11]
    H.J. de Vega, A.V. Mikhailov and N. Sánchez, Teor. Mat. Fiz. 94 (1993) 232, Mod. Phys. Lett. A29 (1994) 2745.Google Scholar
  16. [12]
    F. Combes, H.J. de Vega, A.V. Mikhailov and N. Sánchez, Phys. Rev. D50 (1994) 2754.MathSciNetADSGoogle Scholar
  17. [13]
    H.J. de Vega, A.L. Larsen and N. Sánchez, Nucl. Phys. B427 (1994) 643.CrossRefADSGoogle Scholar
  18. [14]
    I. Krichever, “Two-Dimensional Algebraic-Geometrical Operators with Self-Consistent Potentials”, Landau Institute Preprint, March, 1994, to appear in Funct. Análisis and Appl.Google Scholar
  19. [15]
    H.J. de Vega and N. Sánchez, Nucl. Phys. B309 (1988) 552 and ibid, 577.CrossRefADSGoogle Scholar
  20. [16]
    C.O. Loustó and N. Sánchez, Phys. Rev. D47 (1993) 4498.ADSGoogle Scholar
  21. [17]
    H.J. de Vega and I.L. Egusquiza, Phys. Rev. D50 (1994) 763.Google Scholar
  22. [18]
    A.L. Larsen, Phys. Rev. D50 (1994) 2623.ADSGoogle Scholar
  23. [19]
    A.L. Larsen and M. Axenides, Phys. Lett. B318 (1993) 47.MathSciNetADSGoogle Scholar
  24. [20]
    H.J. de Vega and N. Sánchez, Phys. Rev. D50 (1994) 7202.MathSciNetGoogle Scholar
  25. [21]
    N.Sánchez and G. Veneziano, Nucl. Phys. B333 (1990) 253.CrossRefADSGoogle Scholar
  26. M. Gasperini, N. Sánchez and G. Veneziano, IJMP A6 (1991) 3853, Nucl. Phys. B364 (1991) 365.ADSGoogle Scholar
  27. [22]
    H.J. de Vega, M. Ramón-Medrano and N. Sánchez, Nucl. Phys. B374 (1992) 425CrossRefADSGoogle Scholar
  28. [23]
    H.J. de Vega and N. Sánchez, Phys. Rev. D45 (1992) 2783.ADSGoogle Scholar
  29. M. Ramón-Medrano and N. Sánchez, class. Quantum Grav. 10 (1993) 2007.CrossRefADSGoogle Scholar
  30. [24]
    N. Sánchez, Phys. Lett. B195 (1987) 160.ADSGoogle Scholar
  31. [25]
    H.J. de Vega, M. Ramón-Medrano and N. Sánchez, Nucl. Phys. B351 (1991) 277.CrossRefADSGoogle Scholar
  32. [26]
    A.L. Larsen and N. Sánchez, Phys. Rev. D50 (1994) 7493.ADSGoogle Scholar
  33. [27]
    A.L. Larsen and N. Sánchez, ‘Mass Spectrum of Strings in Anti de Sitter Spacetime’, DEMIRM-Paris-94048, to appear in Phys. Rev. D.Google Scholar
  34. [28]
    A.L. Larsen and N. Sánchez, ‘New Classes of Exact Multi-String Solutions in Curved Spacetimes’, DEMIRM-Paris-95003, to appear in Phys. Rev. D.Google Scholar
  35. [29]
    A.L. Larsen and N. Sánchez, ‘The Effect of Spatial Curvature on the Classical and Quantum Strings’, DEMIRM-Paris-95004.Google Scholar
  36. [30]
    M. Bañados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849.zbMATHCrossRefMathSciNetADSGoogle Scholar
  37. [31]
    G.T. Horowitz and D.L. Welch, Phys. Rev. Lett. 71 (1993) 328.zbMATHCrossRefMathSciNetADSGoogle Scholar
  38. [32]
    N. Kaloper, Phys. Rev. D48 (1993) 2598.MathSciNetADSGoogle Scholar
  39. [33]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Phys. Rev. D48 (1993) 1506.ADSGoogle Scholar
  40. [34]
    C. Farina, J. Gamboa and A.J. Seguí-Santonja, Class. Quantum Grav. 10 (1993) L193.CrossRefADSGoogle Scholar
  41. N. Cruz, C. Martínez and L. Peña, class. Quantum Grav. 11 (1994) 2731.zbMATHCrossRefADSGoogle Scholar
  42. [35]
    A. Achúcarro and M.E. Ortiz, Phys. Rev. D48 (1993) 3600.ADSGoogle Scholar
  43. D. Cangemi, M. Leblanc and R.B. Mann, Phys. Rev. D48 (1993) 3606.MathSciNetADSGoogle Scholar
  44. [36]
    J. Home and G.T. Horowitz, Nucl. Phys. B368 (1992) 444.ADSGoogle Scholar
  45. [37]
    T. Buscher, Phys. Lett. B201 (1988) 466, B194 (1987) 59.MathSciNetADSGoogle Scholar
  46. [38]
    A. Vilenkin, Phys. Rev. D24 (1981) 2082.ADSGoogle Scholar
  47. [39]
    H.J. de Vega and N. Sánchez, Int. J. Mod. Phys. A7 (1992) 3043.ADSGoogle Scholar
  48. [40]
    V.P. Frolov, V.D. Skarzhinsky, A.I. Zelnikov and O. Heinrich, Phys. Lett. B224 (1989) 255.MathSciNetADSGoogle Scholar
  49. [41]
    R. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. Dll (1975) 3424.ADSGoogle Scholar
  50. [42]
    H.J. de Vega, A.L. Larsen and N. Sanchez, “Semi-Classical Quantization of Circular Strings in de Sitter and anti de Sitter Spacetimes”, DEMIRM-Paris-94049, submitted to Phys. Rev. D.Google Scholar
  51. [43]
    A.L. Larsen, “Stable and Unstable Circular Strings in Inflationary Universes”, NORDITA-94/14-P, to appear in Phys. Rev. D.Google Scholar
  52. [44]
    A.L. Larsen, Nucl. Phys. B412 (1994) 372.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • A. L. Larsen
    • 1
  • N. Sánchez
    • 1
  1. 1.Observatoire de ParisDEMIRM. Laboratoire Associé au CNRSUA 336, Observatoire de Paris et École Normale SupérieureFrance

Personalised recommendations