Status of String Cosmology: Basic Concepts and Main Consequences

  • G. Veneziano
Part of the Mathematical and Physical Sciences book series (ASIC, volume 476)


After recalling a few basic concepts from cosmology and string theory, I will discuss the main ideas/assumptions underlying string cosmology and show how these lead to a two-parameter family of “minimal” models. I will then explain how to compute, in terms of those parameters, the spectrum of scalar, tensor and electromagnetic perturbations, point at their (T and S-type) duality symmetries, and mention their most relevant physical consequences.


Gravitational Wave Cosmic Microwave Background String Frame Duality Symmetry Tensor Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Weinberg, Gravitation and Cosmology, John Wiley & Sons, Inc., New York (1972).Google Scholar
  2. 2.
    G. Smoot et al., Astrophys. J. 396 (1992) L1.ADSCrossRefGoogle Scholar
  3. 3.
    L.F. Abbott and So-Young Pi (eds.), Inflationary Cosmology, World Scientific, Singapore (1986).Google Scholar
  4. 4.
    E. Kolb and M. Turner, The Early Universe, Addison-Wesley, New York (1990).zbMATHGoogle Scholar
  5. 5.
    G. Veneziano, Europhys. Lett. 2 (1986) 133.CrossRefGoogle Scholar
  6. 6.
    G. Veneziano, “Quantum strings and the constants of Nature”, in The Challenging Questions (Erice, 1989), ed. A. Zichichi, Plenum Press, New York (1990).Google Scholar
  7. 7.
    C. Lovelace, Phys. Lett B135 (1984) 75; C.G. Callan, D. Friedan, E.J. Martinec and M.J. Perry, NucL Phys. B262 (1985) 593.MathSciNetADSGoogle Scholar
  8. 8.
    E.S. Fradkin and A.A. Tseytlin, Nucl Phys. B261 (1985) 1.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    P. Jordan, Z. Phys. 157 (1959) 112; C. Brans and R.H. Dicke, Phys. Rev. 124 (1961) 925.ADSCrossRefGoogle Scholar
  10. 10.
    E. Witten, Phys. Lett. B149 (1984) 351.MathSciNetADSGoogle Scholar
  11. 11.
    T.R. Taylor and G. Veneziano, Phys. Lett. B213 (1988) 459.ADSGoogle Scholar
  12. 12.
    J. Ellis et al., Phys. Lett. B228 (1989) 264.ADSGoogle Scholar
  13. 13.
    See, for instance, E. Fischbach and C. Talmadge, Nature 356 (1992) 207.ADSCrossRefGoogle Scholar
  14. 14.
    T. Damour and A. M. Polyakov, Nucl Phys. B423 (1994) 532.MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    G. Veneziano, Phys. Lett. B265 (1991) 287; Proceeding 4th PASCOS Conference (Syracuse, May 1994), K.C. Wali ed., World Scientific, Singapore, p. 453.MathSciNetADSGoogle Scholar
  16. 16.
    M. Gasperini and G. Veneziano, Astropart. Phys. 1 (1993) 317; Mod. Phys. Lett. A8 (1993) 3701; Phys. Rev. D50 (1994) 2519.ADSCrossRefGoogle Scholar
  17. 17.
    A.A. Tseytlin, Mod. Phys. Lett. A6 (1991) 1721; A.A. Tseytlin and C. Vafa, Nucl. Phys. B372 (1992) 443.MathSciNetADSGoogle Scholar
  18. 18.
    E. Kiritsis and C. Kounnas, Phys. Lett. B331 (1994) 51; A.A. Tseytlin, Phys. Lett. B334 (1994) 315.MathSciNetADSGoogle Scholar
  19. 19.
    P. Aspinwall, B. Greene and D. Morrison, Phys. Lett. B303 (1993) 249; E. Witten, Nucl Phys. B403 (1993) 159.MathSciNetADSGoogle Scholar
  20. 20.
    R. Brustein and G. Veneziano, Phys. Lett. B329 (1994) 429.ADSGoogle Scholar
  21. 21.
    N. Kaioper, R. Madden and K. A. Olive, Towards a singularity-free inflationary universe?, Univ. Minnesota preprint UMN-TH-1333/95 (June 1995).Google Scholar
  22. 22.
    J. Levin and K. Freese, Nucl Phys. B421 (1994) 635.ADSCrossRefGoogle Scholar
  23. 23.
    L.P. Grishchuk, Sov. Phys. JEPT 40 (1975) 409; A.A. Starobinski, JEPT Lett. 30 (1979) 682;V.A. Rubakov, M. Sazhin and A. Veryaskin, Phys. Lett. B115 (1982) 189; R. Fabbri and M. Pollock, Phys. Lett. B125 (1983) 445.ADSGoogle Scholar
  24. 24.
    M. Gasperini, Status of string cosmology: phenomenological aspects, these proceedings.Google Scholar
  25. 25.
    M. Gasperini, N. Sanchez and G. Veneziano Int. J. Theor. Phys. A6 (1991) 3853; Nucl Phys. B364 (1991) 365; M. Gasperini, Phys. Lett. B258 (1991) 70; G. Veneziano, Helv. Phys. Acta 64 (1991) 877.MathSciNetADSGoogle Scholar
  26. 26.
    See, e.g. V. Mukhanov, H.A. Feldman and R. Brandenberger, Phys. Rep. 215 (1992) 203.MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    R.B. Abbot, B. Bednarz and S.D. Ellis, Phys. Rev. D33 (1986) 2147.ADSGoogle Scholar
  28. 28.
    R. Brustein, M. Gasperini, M. Giovannini, V. Mukhanov and G. Veneziano, Phys. Rev. D51 (1995) 6744.ADSGoogle Scholar
  29. 29.
    G. F. R. Ellis and M. Bruni, Phys. Rev. D40 (1989) 1804; M. Bruni, G. F. R. Ellis and P. K. S. Dunsby, Class. Quant. Grav. 9 (1992) 921.MathSciNetADSGoogle Scholar
  30. 30.
    R. Brustein, M. Gasperini, M. Giovannini and G. Veneziano, Relic gravitational waves from string cosmology, CERN-TH/95–144 (1995), Phys. Lett, in press; see also M. Gasperini and M. Giovannini, Phys. Rev. D47 (1992) 1529.Google Scholar
  31. 31.
    R.E. Vogt et al., Laser Interferometer Gravitational-Wave Observatory, proposal to the National Science Foundation (Caltech, 1989); C. Bradascia et al., in Gravitational Astronomy, eds. D.E. McClelland and H. Bachor, World Scientific, Singapore, (1991).Google Scholar
  32. 32.
    G. V. Pallottino and V. Pizzella, Nuovo Cim. C4 (1981) 237; M. Cerdonio et. al, Phys. Rev. Lett. 71 (1993) 4107.ADSGoogle Scholar
  33. 33.
    F. Pegoraro, E. Picasso and L. Radicati, J. Phys. All (1978) 1949; C. M. Caves, Phys. Lett. B80 (1979) 323; C. E. Reece et al., Phys. Lett. A104 (1984) 341.Google Scholar
  34. 34.
    P. Astone, J. A. Lobo and B. F. Schutz, Class. Quant. Grav. 11 (1994) 2093.ADSCrossRefGoogle Scholar
  35. 35.
    E. N. Parker, Cosmical Magnetic Fields, Clarendon, Oxford (1979); Y. B. Zeldovich, A. A. Ruzmaikin and D. D. Sokoloff, Magnetic fields in astrophysics, Gordon and Breach, New York (1983).Google Scholar
  36. 36.
    M. Gasperini, M. Giovannini and G. Veneziano, Primordial magnetic fields from string cosmology, CERN-TH/95–85 (April 1995) Phys. Rev. Lett, in press.Google Scholar
  37. 37.
    D. Lemoine and M. Lemoine, Primordial magnetic fields in string cosmology, Inst. d’Astrophysique de Paris preprint (April 1995).Google Scholar
  38. 38.
    M. S. Turner and L. M. Widrow, Phys. Rev. D37 (1988) 2743.ADSGoogle Scholar
  39. 39.
    M. Gasperini, M. Giovannini and G. Veneziano, Electromagnetic origin of the CMB anisotropy in string cosmology, CERN-TH/95–102 (April 1995) Phys. Rev. in press.Google Scholar
  40. 40.
    L. Parker, Nature 261 (1976) 20.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • G. Veneziano
    • 1
  1. 1.Theoretical Physics DivisionCERNGeneva 23Switzerland

Personalised recommendations