Skip to main content

Polymer Geometry at Planck Scale and Quantum Einstein Equations

  • Chapter
String Gravity and Physics at the Planck Energy Scale

Part of the book series: Mathematical and Physical Sciences ((ASIC,volume 476))

  • 171 Accesses

Abstract

It is well known that quantum general relativity is perturbatively non-renormalizable. Particletheorists often take this to be a sufficient reason to abandon general relativity and seek an alternative which has a better ultraviolet behavior in perturbation theory. However, one is by no means forced to this route. For, there do exist a number of field theories which are perturbatively non-renormalizable but are exactly soluble. An outstanding example is the Gross-Neveau model in 3 dimensions, (GN)3, which was recently shown to be exactly soluble rigorously [1]. Furthermore, the model does not exhibit any mathematical pathologies. For example, it was at first conjectured that the Wightman functions of a non-renormalizable theory would have a worse mathematical behavior. The solution to (GN)3 showed that this is not the case; as in familiar renormalizable theories, they are tempered distributions. Thus, one can argue that, from a structural viewpoint, perturbative renormalizability is a luxury even in Minkowskian quantum field theories. Of course, it serves as a powerful guiding principle for selecting physically interesting theories since it ensures that the predictions of the theory at a certain length scale are independent of the potential complications at much smaller scales. But it is not a consistency check on the mathematical viability of a theory. Furthermore, in quantum gravity, one is interested precisely in the physics of the Planck scale; the short-distance complications are now the issues of primary interest. Therefore, it seems inappropriate to elevate perturbative renormalizability to a viability criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Faria de Veiga, Ecole Polytechnique thesis (1990); C. de Calan, P. Faria de Veiga, J. Magnen and R. Sénéor, Phy. Rev. Lett. 66 (1991) 3233; A. S. Wightman, in: Mathematical Physics Towards XXIst Century, eds R. N. Sen and A. Gersten (Ben Gurion University Press, 1994)

    Google Scholar 

  2. D. Amati, M. Ciafolini and G. Veneziano, Nucl. Phys. B347 (1990) 550

    Article  ADS  Google Scholar 

  3. A. Ashtekar, C. Rovelli and L. Smolin, Phys. Rev. Lett. 69 (1992) 237

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. A. Agishtein and A. Migdal, Mod. Phys. Lett. 7 (1992) 85

    Article  MathSciNet  Google Scholar 

  5. J. Iwasaki and C. Rovelli, Int. J. Mod. Phys. D1 (1993) 533; Class. & Quantum Grav. 11 (1994) 1653

    ADS  MathSciNet  Google Scholar 

  6. T. Jacobson and L. Smolin, Nucl. Phys. B299 (1988) 295

    Article  ADS  MathSciNet  Google Scholar 

  7. C. Rovelli and L. Smolin, Phys. Rev. Lett. 72 (1994) 446

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. A. Ashtekar, Non-Perturbative Canonical Gravity (World Scientific, Singapore, 1991); in Gravitation and Quantization eds B. Julia and j. Zinn-Justin (Elsevier, Amsterdam 1995)

    MATH  Google Scholar 

  9. R. Rovelli, Class. & Quantum Grav. 8 (1991) 1613

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. L. Smolin, in Quantum Gravity and Cosmology eds J. P. Mercader, H. Solà and E. Verdaguer (World Scientific, Singapore, 1992)

    Google Scholar 

  11. R. Gambini and J. Pullin Loops, Knots, Gauge Theories and Quantum Gravity (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  12. A. Ashtekar, Phys. Rev. Lett. 57 (1986) 2244; Phys. Rev. D36 (1987) 1587

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Ashtekar, in Mathematics and General Relativity (AMS, Providence, 1987), J.F. Barbero G. Phys. Rev D51 (1995) 5507

    Google Scholar 

  14. A. Ashtekar and C. J. Isham, Class. & Quantum Grav. 9 (1992) 1433

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. J. C. Baez and S. Sawin, Functional integration of spaces of connections, q-alg/9507023.

    Google Scholar 

  16. A. Rendall, Class. & Quantum Grav. 10 (1993) 605

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. A. Ashtekar and J. Lewandowski, in Knots and Quantum Gravity, ed J. Baez (Oxford University Press, Oxford, 1994)

    Google Scholar 

  18. J. Baez, Lett. Math. Phys. 31 (1994) 213; in The Proceedings of the Conference on Quantum Topology, ed D. N. Yetter (World Scientific, Singapore, in press)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. D. Marolf and J. Morão, Commun. Math. Phys. 170 (1995) 583

    Article  ADS  MATH  Google Scholar 

  20. A. Ashtekar and J. Lewandowski, J. Math. Phys. 36 (1995) 2170

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. A. Ashtekar and J. Lewandowski, J. Geo. & Phys. (in press)

    Google Scholar 

  22. A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão and T. Thiemann, Coherent state transform on the space of connections, J. Fund. Analysis (in press).

    Google Scholar 

  23. A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão and T. Thiemann, J. Math. Phys. (in press)

    Google Scholar 

  24. J. C. Baez, Spin networks in gauge theory, Adv. Math, (in press); Spin networks in non–perturbative quantum gravity, gr-qc/9504036

    Google Scholar 

  25. L. Smolin (private communication)

    Google Scholar 

  26. C. Rovelli and L. Smolin, Spin networks and quantum gravity, preprint CGPG-95/4–1

    Google Scholar 

  27. R. Penrose, in Quantum Theory and Beyond, ed T. Bastin, Cambridge University Press, Cambridge 1971)

    Google Scholar 

  28. A. Ashtekar and J. Lewandowski, Quantum geometry,(preprint)

    Google Scholar 

  29. C. Rovelli and L. Smolin Nucl. Phys. B442, 593 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Loll, The volume operator in discretized gravity, (pre-print)

    Google Scholar 

  31. C. Rovelli, Nucl. Phys. B405 (1993) 797; L. Smolin, Phys. Rev. D49 (1994) 4028.

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Higuchi, Class. & Quantum Grav. 8 (1991) 1983; 2023; N. P. Landsman J. Geo. & Phys. 15 (1995) 285

    Article  ADS  Google Scholar 

  33. A. Ashtekar and R. S. Tate, J. Math. Phys. 34 (1994) 6434

    Article  ADS  MathSciNet  Google Scholar 

  34. B. Brügmann and J. Pullin, Nucl. Phys. B363 (1991) 221; B390 (1993) 399

    Article  ADS  Google Scholar 

  35. B. Brügmann, R. Gambini and J. Pullin, Phys. Rev. Lett. 68 (1992) 431

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. H. Nicolai and H. J. Matschull, J. Geo. and Phys. 11 (1993) 15; H. J. Matschull, pre-print gr/qc 9305025

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. H. A. Morales-Técotl and C. Rovelli, Phys. Rev. Lett. 72 (1994) 3642

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. C. Rovelli and L. Smolin (private communication)

    Google Scholar 

  39. A. Ashtekar and J. Lewandowski (in preparation)

    Google Scholar 

  40. K. KuchaÅ™ (private communication)

    Google Scholar 

  41. T. Thiemann (in preparation)

    Google Scholar 

  42. A. Ashtekar (in preparation)

    Google Scholar 

  43. A. Ashtekar and L. Bombelli (in preparation)

    Google Scholar 

  44. I. Klebanov and L. Susskind, Nucl. Phys. B309 (1988) 175

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Ashtekar, J. Lewandowski, D. Marolf, J. Moraõ and T. Thiemann, in Geometryof Constrained Dynamical Systems, ed. J. Charap (Cambridge University Press, Cambridge, 1994); Quantum Yang-Mills theory in two dimensions: A complete solution(pre-print)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ashtekar, A. (1996). Polymer Geometry at Planck Scale and Quantum Einstein Equations. In: Sánchez, N., Zichichi, A. (eds) String Gravity and Physics at the Planck Energy Scale. Mathematical and Physical Sciences, vol 476. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0237-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0237-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6589-4

  • Online ISBN: 978-94-009-0237-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics