Skip to main content

Computation of periodic Green’s functions of Stokes flow

  • Chapter

Abstract

Methods of computing periodic Green’s functions of Stokes flow representing the flow due to triply-, doubly-, and singly-periodic arrays of three-dimensional or two-dimensional point forces are reviewed, developed, and discussed with emphasis on efficient numerical computation. The standard representation in terms of Fourier series requires a prohibitive computational effort for use with singularity and boundary-integral-equation methods; alternative representations based on variations of Ewald’s summation method involving various types of splitting between physical and Fourier space with partial sums that decay in a Gaussian or exponential manner, allow for efficient numerical computation. The physical changes undergone by the flow in deriving singly- and doubly- periodic Green’s functions from their triply-periodic counterparts are considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge: The University Press (1992) 259 pp.

    Book  MATH  Google Scholar 

  2. H.A. Lorentz, A general theorem concerning the motion of a viscous fluid and a few consequences derived from it. Collected Papers, Vol. IV, 7–14. The Hague: Martinus Nijhoff (1937).

    Google Scholar 

  3. C. Pozrikidis, On the transient motion of ordered suspensions of liquid drops. J. Fluid Mech. 246 (1993) 301–320.

    Article  ADS  MATH  Google Scholar 

  4. X. Li, H. Zhou and C. Pozrikidis, A numerical study of the shearing motion of emulsions and foams. J. Fluid Mech. 286 (1995) 379–404.

    Article  ADS  MATH  Google Scholar 

  5. X. Li, R. Charles and C. Pozrikidis, Shear flow of suspensions of liquid drops. J. Fluid Mech. (1995) Submitted.

    Google Scholar 

  6. A. S. Sangani and C. Yao, Transport processes in random arrays of cylinders. II: Viscous flow. Phys. Fluids 31 (1988) 2435–2444.

    Article  ADS  MATH  Google Scholar 

  7. A. Sangani and S. Behl, The planar singular solutions of Stokes and Laplace equations and their application to transport processes near porous surfaces. Phys. Fluids A 1 (1989) 21–37.

    Article  ADS  MATH  Google Scholar 

  8. H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5 (1959) 317–328.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. K. Ishii, Viscous flow past multiple planar arrays of small spheres. J. Phys. Soc. Jpn. 46 (1979) 675–680.

    Article  ADS  Google Scholar 

  10. C.W.J. Beenakker, Ewald sums of the Rotne-Prager tensor J. Chem. Phys. 85 (1986) 1581–1582.

    Article  ADS  Google Scholar 

  11. Van de Vorst, Integral formulation to simulate the viscous sintering of a two-dimensional lattice of periodic unit cells J. Eng. Math. 30 (1996) 97–118.

    Article  ADS  MATH  Google Scholar 

  12. J. Hautman and M.L. Klein, An Ewald summation method for planar surfaces and interfaces. Molec. Phys. 75 (1992) 379–395.

    Article  ADS  Google Scholar 

  13. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products. New York: Academic Press (1980) 1204 pp.

    MATH  Google Scholar 

  14. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions. New York: Dover (1972) 1046 pp.

    MATH  Google Scholar 

  15. B.R.A. Nijboer and F.W. De Wette, On the calculation of lattice sums. Physica 23 (1957) 309–321.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. A.P. Prudmikov, Y.A. Brychkov, and O.I. Mariche, Integrals and Series, Vol. I. New York: Gordon and Breach (1986).

    Google Scholar 

  17. C. Pozrikidis, Creeping flow in two-dimensional channels. J. Fluid Mech. 180 (1987) 495–514.

    Article  ADS  Google Scholar 

  18. F.K. Lehner, Plane potential flows past doubly periodic arrays and their connection with effective transport properties. J. Fluid Mech. 162 (1986) 35–51.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pozrikidis, C. (1996). Computation of periodic Green’s functions of Stokes flow. In: Kuiken, H.K. (eds) The Centenary of a Paper on Slow Viscous Flow by the Physicist H.A. Lorentz. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0225-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0225-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6584-9

  • Online ISBN: 978-94-009-0225-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics