Stokes flow due to infinite arrays of stokeslets in three dimensions

  • Nadav Liron


Infinite periodic arrays of stokeslets in three dimensions are summed up by obtaining various rapidly converging infinite series. The three cases treated here are: 1. Identical stokeslets distributed at constant intervals on a line parallel to a plate, 2. An array of identical stokeslets distributed on a two-dimensional periodic lattice on a plane parallel to a plate, 3. The same array, but parallel to and in between two plates. Computational results are shown and comparisons with previously averaged expressions are made.


Flat Plate Infinite Series Poiseuille Flow Stoke Flow Modify Bessel Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.A. Lorentz, Eene algemeene Stelling omtrent de beweging eener vloeistof met wrijving en eenige daaruit afgeleide gevolgen. Zittingsverlag Koninkl. Akad. van Wetensch. Amsterdam 5 (1896) 168–175. (In Dutch). English translation: H.A. Lorentz, A general theorem concerning the motion of a viscous fluid and a few consequences derived from it. In: H.A. Lorentz Collected Works, Vol. IV The Hague: Martinus Nijhoff Publishers (1937) pp. 7–14.zbMATHGoogle Scholar
  2. 2.
    C.W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akad. Verlagsgesellschaft (1927) 337 pp.zbMATHGoogle Scholar
  3. 3.
    J.R. Blake, A note on the image system for a stokeslet in a no-slip boundary. Proc. Camb. Phil. Soc. 70 (1971) 303–310.ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    N. Liron, & S. Mochon, Stokes flow for a stokeslet between two parallel flat plates. J. Eng. Maths. 10 (1976) 287–303.CrossRefzbMATHGoogle Scholar
  5. 5.
    N. Liron, & R. Shahar, Stokes flow due to a stokeslet in a pipe. J. Fluid Mech. 86 (1978) 121–144.MathSciNetGoogle Scholar
  6. 6.
    J. Gray, & G. Hancock, The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32 (1955) 802–814.Google Scholar
  7. 7.
    J.L. Lighthill, Mathematical Biofluiddynamics. Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1975) 281 pp.CrossRefzbMATHGoogle Scholar
  8. 8.
    J.L. Lighthill, Flagellar hydrodynamics. SIAM Rev. 18 (1976) 161–230.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    S. Gueron & N. Liron, Ciliary motion modeling and dynamic multicilia interactions. Biophys. J. 63 (1992) 1045–1058.ADSCrossRefGoogle Scholar
  10. 10.
    S. Gueron & N. Liron, Simulation of three-dimensional ciliary beats and cilia interactions. Biophys. J. 65 (1993) 499–507.ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Blake, A model for the micro-structure in ciliated organisms. J. Fluid Mech. 55 (1972) 1–23.ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    N. Liron & S. Mochon, The discrete cilia approach for propulsion of ciliated microorganisms. J. Fluid Mech. 75 (1976) 593–607.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    N. Liron, Fluid transport by cilia between parallel plates. J. Fluid Mech. 86 (1978) 705–726.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    N. Liron, stokeslet arrays in a pipe and their application to ciliary transport. J. Fluid Mech. 143 (1984) 173–195.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    G.N. Watson. A treatise on the theory of Bessel Functions. Cambridge: Cambridge Univ. Press, 2d. ed. (1948) 804pp.Google Scholar
  16. 16.
    M. Abramowitz & I.A. Stegun, Handbook of Mathematical Functions. New York: Dover (1965) 1046 pp.Google Scholar
  17. 17.
    I.N. Sneddon, Fourier Transforms. New York: McGraw Hill (1951) 542 pp.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Nadav Liron
    • 1
  1. 1.Department of MathematicsTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations