Advertisement

Microbial Cycling of Methyl Bromide

  • Ronald S. Oremland
  • U. S. Geological Survey

Abstract

Environmental concern about brominated halocarbons like methyl bromide (MeBr) is focused on their potential to destroy stratospheric ozone. Photocatalysis of MeBr and other halocarbons in the stratosphere results in the liberation of reactive CI and Br atoms. Because Br atoms are perhaps as much as 100-fold more efficient at attacking ozone than are CI atoms, bromine’s lower abundance is partly compensated for by its higher reactivity.

Keywords

Stratospheric Ozone Methyl Bromide Methane Thiol Mono Lake Methyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butler JL (1994) Geophys. Res. Lett. 21, 185–188.CrossRefGoogle Scholar
  2. Cicerone RJ et al (1988) J. Geophys. Res. 93, 3745–3749.CrossRefGoogle Scholar
  3. Cicerone RJ, Oremland RS (1988) Global Biogeochem. Cycles 2, 299–327.CrossRefGoogle Scholar
  4. Connell TL et al (1994) Eos Abstr. Fall Meet. Am. Geophys. Union, p.110.Google Scholar
  5. Elliott S, Rowland FS (1992) Geophys. Res. Lett. 19, 1043–1046.Google Scholar
  6. Khalil MAK et al (1993)J. Geophys. Res. 98, 2887–2896.CrossRefGoogle Scholar
  7. Kiene RP et al (1986) Appl. Environ. Microbiol. 52, 1037–1045.PubMedCentralPubMedGoogle Scholar
  8. Lobert JM et al (1995) Science 267, 1002–1005.PubMedCrossRefGoogle Scholar
  9. Manley SL et al (1992) Limnol. Oceanogr. 37, 1652–1659.CrossRefGoogle Scholar
  10. Mano S, Andreae MO (1994) Science 263, 1255–1258.PubMedCrossRefGoogle Scholar
  11. McElroy MB et al (1986) Nature 321, 759–762.CrossRefGoogle Scholar
  12. Mellouki A et al (1992) Geophys. Res. Lett. 19, 2059–2062.CrossRefGoogle Scholar
  13. Miller LG et al (1994) Eos Abstr. Fall Meet. Am. Geophys. Union, p. 110.Google Scholar
  14. Miller LG et al (1995) Soil Biol. Biochem. (submitted).Google Scholar
  15. Oremland RS et al (1993) In Oremland RS, ed, Biogeochemistry of Global Change:Radiatively Active Trace Gases, pp. ([0-9]+) – ([0-9]+), Chapman and Hall, New York, USA.CrossRefGoogle Scholar
  16. Oremland RS et al(1994 a)Environ. Sci. Technol. 28,514–520.PubMedCrossRefGoogle Scholar
  17. Oremland RS et al (1994 b)Appl.Environ.Microbiol. 60, 3640–3646.PubMedCentralPubMedGoogle Scholar
  18. Prather MJ, Watson RT (1990) Nature 344, 729–733.CrossRefGoogle Scholar
  19. Shorter JH et al (1995) Nature (in press).Google Scholar
  20. Singh HB, Kanakidou M (1993) Geophys. Res. Lett. 20, 133–136.CrossRefGoogle Scholar
  21. Singh HB et al (1983) J. Geophys. Res. 88, 3684–3690.CrossRefGoogle Scholar
  22. Solomon S et al (1990) J. Geophys. Res. 95, 13,([0-9]+) – ([0-9]+), 817.Google Scholar
  23. Sturges WT et al (1992) Nature 358, 660–662.CrossRefGoogle Scholar
  24. Swain CG, Scott CB (1953) J. Am. Chem. Soc. 75, 141–147.CrossRefGoogle Scholar
  25. Wahner A, Schiller C (1992) J. Geophys. Res. 97, 8047–8055.CrossRefGoogle Scholar
  26. Yagi K et al (1995) Science 267, 1979–1981.PubMedCrossRefGoogle Scholar
  27. Zafiriou OC (1975) J. Mar. Res. 33, 75–81.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Ronald S. Oremland
    • 1
  • U. S. Geological Survey
    • 1
  1. 1.Menlo ParkUSA

Personalised recommendations