Advertisement

Structural studies of methylamine dehydrogenase

  • F. S. Mathews
  • L. Chen
  • R. C. E. Durley
  • Z.-w. Chen
  • W. S. McIntire

Abstract

Methylamine dehydrogenase (MADH), found in methyldtrophic bacteria, is an inducible, periplasmic quinoenzyme which catalyzes the oxidation of methylamine to formaldehyde and ammonia (De Beer R et al. 1980). It contains the novel cofactor tryptophan tryptophylquinone (TTQ), which is derived from two tryptophan side chains (McIntire WS et al. 1991). Subsequently, electrons are transferred to the membrane bound terminal oxidase, cytochrome aa3 via a series of soluble electron carrier proteins. In facultative autotrophs, such as Paracoccus denitrificans, the initial electron acceptor in this chain is amicyanin, a blue copper protein (Husain M, Davidson VL 1985), while in Methylophilus methylotrophus W3A1, which lacks the gene for amicyanin (Chistoserdov AY et al. 1994) the initial acceptor is a cytochrome c552 (Chandrasekar R Clapper MH 1986). In the case of P. denitrificans, in vitro studies suggest that the acceptor following amicyanin in the electron transfer chain is cytochrome c551i(Husain M, Davidson VL 1986). All three proteins are induced when these bacteria are grown on methylamine as the sole carbon source.

Keywords

Interface Residue Electron Transfer Chain Paracoccus Denitrificans Blue Copper Protein Histidine Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chandrasekar R, Clapper MH (1986) J. Biol. Chem. 261, 3616–3619.PubMedGoogle Scholar
  2. Chen L et al. (1992a) Proteins 14, 288–299.PubMedCrossRefGoogle Scholar
  3. Chen L et al. (1992b) Biochemistry 31, 4959–4964.PubMedCrossRefGoogle Scholar
  4. Chen L et al. (1994) Science 264, 86–90.PubMedCrossRefGoogle Scholar
  5. Chistoserdov AY et al. (1994) J. Bacteriol. 176, 4073–4080.PubMedCentralPubMedGoogle Scholar
  6. De Beer R et al. (1980) Biochim. Biophys. Acta 662, 370–374.Google Scholar
  7. Durley RCE et al. (1993) Protein Science 2, 739–752.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Farver O et al. (1982) Biochemistry 21, 3356–3361.Google Scholar
  9. Huizinga EG et al. (1992) Biochemistry 31, 9789–9795.PubMedCrossRefGoogle Scholar
  10. Husain M, Davidson VL (1985). J. Biol. Chem. 260, 14626–14629.PubMedGoogle Scholar
  11. Husain M, Davidson VL (1986) J. Biol. Chem. 261, 8577–8580.PubMedGoogle Scholar
  12. Kenny WC, Mclntire WM (1983) Biochemistry 22, 3858–3868.CrossRefGoogle Scholar
  13. Kuusk V, Mclntire WM (1994) J. Biol. Chem. 269, 2616–26143.Google Scholar
  14. Mclntire WS et al. (1991) Science 252, 817–824.CrossRefGoogle Scholar
  15. Vellieux FMD et al. (1989) EMBO J. 8, 2171–2178.PubMedCentralPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • F. S. Mathews
    • 1
  • L. Chen
    • 1
  • R. C. E. Durley
    • 1
  • Z.-w. Chen
    • 1
  • W. S. McIntire
    • 2
    • 3
    • 4
  1. 1.Dept. of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisUSA
  2. 2.Molecular Biology Division, Department of Veterans Affairs Medical CenterSan FranciscoUSA
  3. 3.Department Of Biochemistry And BiophysicsUniversity of CaliforniaSan FranciscoUSA
  4. 4.Department Of AnesthesiaUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations