The Biochemistry of CO Dehydrogenase in Rhodospirillum rubrum

  • P. W. Ludden
  • G. P. Roberts
  • R. L. Kerby
  • N. Spangler
  • J. Fox
  • D. Shelver
  • Y. He
  • R. Watt

Abstract

Carbon monoxide metabolism by the photosynthetic bacteria was first noted by Uffen, who isolated Rubivivox gelatinosus (formerly Rhodopseudomonas gelatinosus) for its ability to tolerate CO (Uffen 1976). R. gelatinosus was shown to grow with CO as the sole energy and primary carbon source, anaerobically in the dark. R. rubrum was also shown to possess the ability to oxidize CO (Uffen 1981) and its ability to utilize CO as a carbon and energy source has been established (Kerby et al 1995).

Keywords

Fe4S4 Cluster Mossbauer Spectrum Rhodospirillum Rubrum CooH5 COOH6 Desulfovibrio Desulfuricans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonam D, et al. (1989) J. Bacteriol. 171, 3102–3107.PubMedCentralPubMedGoogle Scholar
  2. Bonam D, et al. (1987) J. Biol. Chem. 262, 2980–2987.PubMedGoogle Scholar
  3. Bonam D, et al. (1988) Proc. Natl. Acad. Sci. USA 85, 31–35.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ensign SA, et al. (1989) Biochemistry 28, 4968–4973.PubMedCrossRefGoogle Scholar
  5. Ensign SA, et al. (1990) Biochemistry 29, 2162–2168.PubMedCrossRefGoogle Scholar
  6. Ensign SA, et al. (1989) Biochemistry 28, 4973–4979.PubMedCrossRefGoogle Scholar
  7. Ensign SA, et al. (1991) J. Biol. Chem. 266, 18395–18403.PubMedGoogle Scholar
  8. Hu Z, et al. (1995) submitted to J. Am. Chem. Soc.Google Scholar
  9. Kerby RL, et al. (1987) J. Bacteriol. 169, 5605–5609.PubMedCentralPubMedGoogle Scholar
  10. Kerby RL, et al. (1992) J. Bacteriol. 174, 5284–5294.PubMedCentralPubMedGoogle Scholar
  11. Kerby RL, et al. (1995) J. Bacteriol. 177, 2241–2244.PubMedCentralPubMedGoogle Scholar
  12. Lee MH, et al. (1992) J. Bacteriol. 174, 4324–4330.PubMedCentralPubMedGoogle Scholar
  13. Lee MH, et al. (1993) Protein Sci. 2, 1042–1052.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Lindahl PA, et al. (1990) J. Biol. Chem. 265, 3873–3879.PubMedGoogle Scholar
  15. Maier T, et al. (1993) J. Bacteriol. 175, 630–635.PubMedCentralPubMedGoogle Scholar
  16. Maier T, et al. (1995) Eur. J. Biochem. 230, 133–138.PubMedCrossRefGoogle Scholar
  17. Qiu D, et al. (1994) Science 264, 817–819.PubMedCrossRefGoogle Scholar
  18. Rossman R, et al. (1994) Eur. J. Biochem. 220, 377–384.CrossRefGoogle Scholar
  19. Seravalli J, et al. (1995) Biochemistry 34, 7879–7888.PubMedCrossRefGoogle Scholar
  20. Shelver D, et al. (1995) J. Bacteriol. 177, 2157–2163.PubMedCentralPubMedGoogle Scholar
  21. Smith ET, et al. (1992) Biochem. J. 285, 181–185.PubMedCentralPubMedGoogle Scholar
  22. Stephens PJ, et al. (1989) J. Biol. Chem. 264, 16347–16350.PubMedGoogle Scholar
  23. Thauer RK, et al. (1989) Annu. Rev. Microbiol. 43, 43–67.PubMedCrossRefGoogle Scholar
  24. Uffen RL (1976) Proc. Nad. Acad. Sci. USA 73, 3298–3302.CrossRefGoogle Scholar
  25. Uffen RL (1981) Enzym. Microb. Technol. 3, 197–206.CrossRefGoogle Scholar
  26. Volbeda A, et al. (1995) Nature 373, 580–587.PubMedCrossRefGoogle Scholar
  27. Yagi T (1958) Biochim. Biophys. Acta 30, 194–195.PubMedCrossRefGoogle Scholar
  28. Yagi T (1959) J. Biochem. 46, 949–9.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • P. W. Ludden
    • 1
  • G. P. Roberts
    • 2
  • R. L. Kerby
    • 1
    • 2
  • N. Spangler
    • 1
  • J. Fox
    • 1
  • D. Shelver
    • 2
  • Y. He
    • 2
  • R. Watt
    • 1
  1. 1.Department of BiochemistryUniversity of WisconsinMadisonUSA
  2. 2.Department of BacteriologyUniversity of WisconsinMadisonUSA

Personalised recommendations