On the Importance of the Poynting-Robertson Effect on Meteoroids
Abstract
A small generalization of the equation of motion for the Poynting-Robertson effect is tested in order to find the significance of new terms. The test is made for dust particles ejected at perihelia of the orbit of the comet Encke. The particles are released at the speed of 40 ms-1. Gravitational perturbations of planets, Poynting-Robertson effect and solar corpuscular radiation (solar wind) are considered. Other nongravitational effects may be represented by new terms in the suggested form of the nongravitational force. Various values of normal and transversal components of the perturbing nongravitational force are used. The final results of numerical integrations are compared with those obtained on the basis of the Poynting-Robert son effect.
Keywords
Solar Wind Dust Particle Orbital Element Radiation Force Semimajor AxisPreview
Unable to display preview. Download preview PDF.
References
- Burns, J.A., Lamy, P.L., and Soter, S.1979, ’Radiation Forces on Small Particles in the Solar System’, Icarus 40, 1–48ADSCrossRefGoogle Scholar
- Everhart, E.1985, ’An Efficient Integrator that uses Gauss-Radau Spacing’ in A. Carusi and G.B. Valsecchi, ed(s)., Dynamics of Comets: Their Origin and Evolution, Reidel:Dordrecht, pp.185–202CrossRefGoogle Scholar
- Jačkson, A.A. and Zook, H.A.1992, ’Orbital Evolution of Dust Particles from Comets and Asteroids’, Icarus 97, 70–84ADSCrossRefGoogle Scholar
- Hughes, D.W., Williams, I.P., and Fox, K.1981, ’The Mass Segregation and Nodal Retrogression of the Quadrantid Meteor Stream’, Mon. Not. R. astron. Soc. 195, 625–637ADSGoogle Scholar
- Klačka, J. 1992a, ’Poynting-Robertson Effect. I. Equation of Motion’, Earth, Moon and Planets 59, 41–59ADSCrossRefGoogle Scholar
- Klačka, J. 1992b, ’Poynting-Robertson Effect. II. Perturbation Equations’, Earth, Moon and Planets 59, 211–218MATHADSCrossRefGoogle Scholar
- Klačka, J.1993, ’Misunderstanding of the Poynting-Robertson Effect’, Earth, Moon and Planets 63, 255–258ADSCrossRefGoogle Scholar
- Klačka, J. 1994a, ’Interplanetary Dust Particles and Solar Radiation’, Earth, Moon and Planets 64, 125–132ADSCrossRefGoogle Scholar
- Klačka, J. 1994b, ’On the Stability of the Zodiacal Cloud’, Earth, Moon and Planets 64, 95–98ADSCrossRefGoogle Scholar
- Klačka, J. 1994c, ’Nongravitational Forces and Meteoroid Streams’, Earth, Moon and Planets 65, 191–196ADSCrossRefGoogle Scholar
- Klačka, J. and Kocifaj, M.1994, ’Electromagnetic Radiation and Equation of Motion for Dust Particle’ in K. Kurzynska, F. Barlier, P.K. Seidelmann, and I. Wytrzyszczak, ed(s)., Dynamics and Astrometry of Natural and Artificial Celestial Bodies, Astronomical Observatory of A. Mickiewicz University, Poznari, pp. 187–190Google Scholar
- Klačka, J. and Pittich, E.M. 1994a, ’Long-term Orbital Evolution of Dust Particles Ejected from Comet Encke’, Planet. Space Sci. 42, 109–112ADSCrossRefGoogle Scholar
- Klačka, J. find Pittich, E.M. 1994b, ’Numerical Simulation of Comet Encke’s Meteoroid Stream’, presented at the XXIInd Gen. Ass. of the IAU, The Hague, Netherlands, August 1994.Google Scholar
- Klačka, J. and Pittich, E.M. 1994c, ’Orbital Dispersions of Comet Encke’s Meteoroids’, presented at the conference Meteoroids, Bratislava, Slovakia, August 1994.Google Scholar
- Marsden, B.G. 1989, Catalogue of Cometary Orbits, IAU, Central Bureau for Astronomical Telegrams, Cambridge, Massachusetts, 96 pp.Google Scholar
- Pittich, E.M. and Klačka, J. 1993, ’Orbital Model for Dust Particles of Comet Encke’ in J. Stohl and I.P. Williams, ed(s)., Meteoroids and Their Parent Bodies, Astronomical Institute of the Slovak Academy of Sciences, Bratislava, pp. 395–398Google Scholar
- Pittich, E.M. and Klačka, J. 1994, ’Solar Wind and Motion of Dust Particles’ in K. Kurzynska, F. Barlier, P.K. Seidelmann, and I. Wytrzyszczak, ed(s)., Dynamics and Astrometry of Natural and Artificial Celestial Bodies, Astronomical Observatory of A. Mickiewicz University, Poznari, pp. 409–412Google Scholar
- Wyatt, S.P. and Whipple, F.L. 1950, ’The Poynting-Robertson Effect on Meteor Orbits’, Astrophys. J. 111, 134–141ADSGoogle Scholar