Skip to main content

Part of the book series: Developments in Plant Pathology ((DIPP,volume 7))

Abstract

Image analysis [1,2] is used to extract quantitative information from images of any source. Progress has resulted from advances in computing science, and nowadays image analysis is widely used for increasingly more sophisticated tasks in the laboratory and in industry, in material science as well as in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Russ J.C.: Computer-assisted microscopy, the measurement and analysis of images, Plenum Press, London, 1990.

    Google Scholar 

  2. Souchier, C.: L’analyse d’images, Techniques de I’Ingénieur, Traité Analyse Chimique et Caracterisation 7 (1991), 855-1-855-18.

    Google Scholar 

  3. Baak J.P.A.: Manual of quantitative pathology in cancer diagnosis and prognosis, Springer Verlag, London, 1991.

    Google Scholar 

  4. Caldwell D.E., Korber D.R., and Lawrence J.R.: Confocal laser microscopy and digital image analysis in microbial ecology, Advances in Microbial Ecology 12 (1992), 1–67.

    CAS  Google Scholar 

  5. Pratt W.K.: Digital image processing, 2nd edition, J. Wiley (ed.), 1990.

    Google Scholar 

  6. Sonka M., Hlavac V., and Boyle, R.: Image processing, analysis and machine vision, Chapman et Hall (eds.), 1993.

    Google Scholar 

  7. Coster M., and Chermant J.L.: Précis d’analyse d’images, CNRS, 1989.

    Google Scholar 

  8. Meyer F.: Mathematical Morphology: from two dimensions to three dimensions, J. Microsc. 165 (1992), 5–28.

    Article  Google Scholar 

  9. Cruz Orive L.M., and Weibel E.R.: Recent stereological methods for cell biology: a brief review, Am. J. Physiol. 258 (1990), L148–L156.

    PubMed  CAS  Google Scholar 

  10. Cau, VMicroscopic quantitative, stereologie, autoradiographic et immunocytochimie quantitatives, INSERM, 1990.

    Google Scholar 

  11. Kubinova L.: Recent stereological methods for the measurement of leaf anatomical characteristics - estimation of volume density, volume and surface area, J. Exp. Bot. 44 (1993), 165–173.

    Article  Google Scholar 

  12. Pawley J.B.: Handbook of biological confocal microscopy, Plenum Press, New York, 1995.

    Google Scholar 

  13. Kwon Y.H., Wells K.S., and Hoch H.C.: Fluorescence confocal microscopy: applications in fungal cytology, Mycologia 85 (1993), 721–733.

    Article  Google Scholar 

  14. Paddock S.W.; To boldly glow .... Applications of laser scanning confocal microscopy in developmental biology, BioEssays 16 (1994), 357–365.

    Article  PubMed  CAS  Google Scholar 

  15. Bryon P.A., Delorme R., and Souchier C.: La microscopie confocale á balayage laser et ses applications hématologiques, Rev.fr. laboratoires 275 (1995), 37–43.

    Article  Google Scholar 

  16. Zhang D., Wadsworth P., and Hepler P.K.: Dynamics of microfilaments are similar, but distinct from microtubules during cytokinesis in living, dividing plant cells, Cell Motil CytoskeL 24(1993), 151–155.

    Article  Google Scholar 

  17. Meindl U., Zhang D., and Hepler P.K.: Actin microfilaments are associated with the migrating nucleus and the cell cortex in the green alga Micrasterias - studies on living cells, J. Cell ScL 107(1994), 1929–1934.

    CAS  Google Scholar 

  18. Hush J.M., Wadsworth P., Callaham D.A., and Hepler P.K.: Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching, J. Cell ScL 107 (1994), 775–784.

    Google Scholar 

  19. Llyod C.V., Venverloo C., Goodbody K.C., and Shaw P.J.: Confocal laser microscopy and three-dimensional reconstruction of nucleus-associated microtubules in the division plane of vacuolated plant cells, J. Microsc. 166 (1992), 99–109.

    Article  Google Scholar 

  20. Foissner I., and Wasteneys G.O.: Injury to Nitella internodal cells alters microtubule organization but microtubules are not involved in the wound response, Protoplasma 182 (1994), 102–114.

    Article  Google Scholar 

  21. Harders J., Lukacs N., Robert-Nicoud M., Jovin T.M., and Riesner D.: Imaging of viroids in nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning microscopy, EMBO J. 8 (1989), 3941–3949.

    PubMed  CAS  Google Scholar 

  22. Montijn M.B., Houtsmuller A.B., Oud J.L., and Nanninga N.: The spatial localization of 18 S rRNA genes, in relation to the descent of the cells, in the root cortex of Petunia hybrida, J. Cell ScL 107 (1994), 457–467.

    CAS  Google Scholar 

  23. Shaw P.J.: Computer Reconstruction in 3-Dimensional Fluorescence Microscopy, Electronic Light Microscopy, in : Techniques in Modern Biomedical Microscopy (1993), 211-230.

    Google Scholar 

  24. Van derVoort H.T.M., Messerli J.M., Noordmans H.J., and Smeulders A.W.M.: Volume visualization for interactive microscopic image analysis, Bioimaging 1 (1993), 20–29.

    Article  Google Scholar 

  25. Rigaut, J.P., Carvajal-Gonzalez, S., and Vassy, J.: 3-D image cytometiy, In A. Kriete (ed.), Visualization in biomedical microscopies, VCH (1992), pp. 205-248.

    Google Scholar 

  26. Delorme R., Souchier C., Ffrench M., and Bryon P.A.: Confocal image analysis of three-dimensional intracellular protein distribution: application to cyclin A distribution in lymphoid cells, Bioimaging 2 (1994), 69–77.

    Article  CAS  Google Scholar 

  27. Thoni C., and Schnepf E.: Nuclear and organelle DNA replication during spore germination in bryophytes and Equisetum, Botanica Acta 107 (1994), 210–217.

    CAS  Google Scholar 

  28. Gehring C.A., Williams D.A., Cody S.H., and Parish, R.W.: Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium, Nature 345 (1990), 528–530.

    Article  PubMed  CAS  Google Scholar 

  29. Read N.D., Allan W.T.G., Knight H., Knight M.R., Malho R., Russell A., Shacklock, P.S., and Trewavas A.J.: Imaging and measurement of cytosolic free calcium in plant and fungal cells, J. Microsc. 166 (1992), 57–86.

    Article  CAS  Google Scholar 

  30. Leitch A.R., Schwarzacher T., and Leitch I.J.: The use of fluorochromes in the cytogenetics of the small-grained cereals (Triticeae), Histochem. J. 26 (1994), 471–479.

    Article  PubMed  CAS  Google Scholar 

  31. Fukui K., Ohmido N., and Khush G.S.: Variability in rDNA Loci in the genus Oryza detected through fluorescence in situ hybridization, Theor: Appl. Genet. 87 (1994), 893–899.

    Article  CAS  Google Scholar 

  32. Souchier C., Ffrench M., Berger F., Scoazec J.Y., and Biyon P.A.: Image analysis applied to proliferating cells in malignant lymphoma, Cytometry 9 (1988), 201–205.

    Article  PubMed  CAS  Google Scholar 

  33. Westerkamp D., and Gahm T.: Non-distorted assemblage of the digital images of adjacent fields in histological sections, Anal. Cell. Pathol. 5 (1993), 235–247.

    PubMed  CAS  Google Scholar 

  34. Evans-Hurrell J.A., Adler J., Denyer S., Rogers T.G., and Williams P.: A method for the enumeration of bacterial adhesion to epithelial cells using image analysis, FEMS Microbiol. Lett. 107 (1993), 77–82.

    Article  PubMed  CAS  Google Scholar 

  35. Baluska F., Brailsford R.W., Hauskrecht M., Jackson M.B., and Barlow P.W.: Cellular dimorphism in the maize root cortex: involvement of microtubules, ethylene and gibberellin in the differentiation of cellular behaviour in postmitotic growth zones, Bot. Acta 106 (1993), 394–403.

    CAS  Google Scholar 

  36. Ball T.B., and Brotherson J.D.: The effect of varying environmental conditions on phytolith morphometries in two species of grass (Bouteloua curtipendula and Panicum virgatum), Scanning Microsc. 6 (1992), 1163–1181.

    Google Scholar 

  37. Paul G.C., Kent C.A., and Thomas C.R.: Viability testing and characterization of germination of fungal spores by automatic image analysis, Biotechnol. Bioeng. 42 (1993), 13–23.

    Article  Google Scholar 

  38. Tucker K.G., Kelly T., Delgrazia P., and Thomas C.R.: Fully automatic measurement of mycelial morphology by image analysis, Biotechnol.Prog. 4 (1992), 353–359.

    Article  Google Scholar 

  39. Wilkinson M.H.F., Jansen G.J., Van derWaaij D.: Computer processing of microscopic images of bacteria: morphometry and fluorometiy, Trends in Microbiology 2(1994), 485–489.

    Article  PubMed  CAS  Google Scholar 

  40. Nielsen J., Johansen C.L., Jacobsen M., Krabben P., and Villadsen J.: Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production, Biotechnol. Prog. 11 (1995) 93–98.

    Article  PubMed  CAS  Google Scholar 

  41. Vikman P.A., and Vessey J.K.: Ontogenetic changes in root nodule subpopulations of Common bean (Phaseolus vulgaris L.). Ill Nodule formation, growth and degradation, J Exp. Bot. 44 (1993), 579–586.

    Article  Google Scholar 

  42. Seracu D., and Baiulescu G.E.: Color measurement in leaf diagnosis, Anal. Lett. 26 (1993), 2349–2359.

    CAS  Google Scholar 

  43. Myers D.A, Vogelmann T.C., Bornman J.F.: Epidermal focussing and effects on light utilization in Oxalis acetosella, Physiologia Plantarum 91 (1994), 651–656.

    Article  CAS  Google Scholar 

  44. Bocking A., Giroud F., and Reith A.: Consensus report of the ESACP task force on standardization of diagnostic DNA image cytometry, Anal. Cell. Pathol. 8 (1995), 67–74.

    PubMed  CAS  Google Scholar 

  45. Driss-Ecole D., Schoëvaërt D., Noin M., and Perbal G.: Densitometric analysis of nuclear DNA content in lentil roots grown in space, Biol. Cell 81 (1994), 59–64.

    Article  PubMed  CAS  Google Scholar 

  46. Cremonini R., Colonna N., Stephani A., Galasso I., and Pignone D.: Nuclear DNA content, chromatin organization and chromosome banding in brown and yellow seeds of Dasypyrum villosum (L.) P. Candargy, Heredity 72 (1994), 365–373.

    Article  CAS  Google Scholar 

  47. Vigo J., Salmon J.M., Lahmy S., and Viallet P.: Fluorescent image cytometry: from qualitative to quantitative measurements, Anal. Cell. Pathol., 3 (1991), 145–165.

    PubMed  CAS  Google Scholar 

  48. Satoh M., Nemoto Y., Kawano S., Nagata T., Hirokawa H., and Kuroiwa T.: Organization of heterogeneous mitochondrial DNA molecules in mitochondrial nuclei of cultured tobacco cells, Protoplasma 175 (1993), 112–120.

    Article  CAS  Google Scholar 

  49. Marie D., and Brown S.C.: A cytometric exercise in plant DNA histograms, with 2C values for 70 species, Biol Cell 78 (1993), 41–51.

    Article  PubMed  CAS  Google Scholar 

  50. Fouchet P., Jayat C., Héchard Y., Ratinaud M.H., and Frelat G.: Recent advances of flow cytometry in fundamental and applied microbiology, Biol Cell 78 (1993), 95–109.

    Article  PubMed  CAS  Google Scholar 

  51. Young I.T., Verbeek P.W., and Mayall B.H.: Characterization of chromatin distribution in cell nuclei, Cytometry 1 (1986), 467–474.

    Article  Google Scholar 

  52. Haralick R.M., Shanmugam K., and Its’Hak Dinstein: Textural features for image classification, IEE Transactions on systems, man and cybernetics 3 (1973), 610–621.

    Article  Google Scholar 

  53. Galloway M.M.: Texture analysis usmg gray level run lengths, Computer Graphics and image processing 4 (1975), 172–1 9.

    Article  Google Scholar 

  54. Sparvoli E., Levi M., and Rossi E.: Replicon clusters may form structurally stable complexes of chromatin and chromosomes, J. Cell Sci. 107 (1994), 3097–3103.

    PubMed  CAS  Google Scholar 

  55. LeGuellec D., Mallein-Gerin F., Treilleux I., Bonaventure J., Peysson P., and Herbage D.: Localization of the expression of type I, II and III collagen genes in human normal and hypochondrogenesis cartilage canals, Histochem. J. 26 (1994), 695–704.

    Article  PubMed  Google Scholar 

  56. Nico A., and Schellart M.: Automatic graIn counting In autoradiographs by computerized pattern recognition, In Donat-P. Hader (ed.), Image analysis in biology, CRC Press, London (1992), pp. 271–286.

    Google Scholar 

  57. Bacus S., Fowers J.L., Press M.J., Bacus J.W., and McCarty, K.S.: The evaluation of estrogen receptor in primary breast carcinoma in computer assisted image analysis, AJCP (1988), 233-239.

    Google Scholar 

  58. Slarew R.J., Bodmer S.C., and Pertschuk L.P.: Quantitative imaging of imunohistochemical (PAP) estrogen receptor staining patterns in breast cancer sections, Cytometry 11 (1990), 359–378.

    Article  Google Scholar 

  59. Williams M.A.: Autoradiography: its methodology at the present time, J. Microsc. 128 (1982), 79–94.

    Article  PubMed  CAS  Google Scholar 

  60. Dussert C., Rasigni G., Rasigni M., and Palmari J.: Minimal spanning tree: a new approach for studying order and disorder, Phys. Rev. B. 34 (1986), 3528–3531.

    Article  Google Scholar 

  61. Marcepoil R., and Usson Y.: Methods for the study of cellular sociology: vorono’i diagrams and parametrization of the spatial relationships, J. Theor. Biol 154 (1992), 359–369.

    Article  Google Scholar 

  62. Raymond E., Raphael M., Grimaud M., Vincent L., Binet J.L., and Meyer F.: Germinal center analysis with the tools of mathematical morphology on graphs, Cytometry 14 (1993), 848–861.

    Article  PubMed  CAS  Google Scholar 

  63. Hassan B., Errington R.J., White N.S., Jackson D.A., and Cook P.R.: Replication and transcription sites are colocalized in human cells, J. Cell Sci. 107 (1994), 425–434.

    PubMed  CAS  Google Scholar 

  64. Dunn K.W., Mayor S., Myers J.N., and Maxfield F.R.: Applications of ratio fluorescence microscopy in the study of cell physiology, FASEB J. 8 (1994), 573–582.

    PubMed  CAS  Google Scholar 

  65. Lang M., Lichtenthaler H.K., Sowinska M., Summ P., and Heisel F.: Blue, green and red fluorescence signatures and images of Tobacco leaves, Bot. Acta 107 (1994), 230–236.

    Google Scholar 

  66. Haugland R.P.: Handbook of fluorescent probes and research chemicals, Molecular probes, 1992.

    Google Scholar 

  67. Salmon J.M., Vigo J., and Viallet P.: Resolution of complex fluorescence spectra recorded on single unpigmented living cells using a computerised method, Cytometry 9(1988), 25–32.

    Article  PubMed  CAS  Google Scholar 

  68. Jovin T.M., and Arndt-Jovin D.J.: FRET microscopy: digital imaging of fluorescence resonance energy transfer. Application In cell biology, In E. Kohen and J.G. Hirschberg (eds.), Cell Structure and Function by Microspectrofluorometry, Academic Press (1989), pp. 99-117.

    Google Scholar 

  69. Tian R., and Michael A.J.R.: Time-resolved fluorescence microscopy, In R.J. Cherry (ed.), New techniques of optical microscopy and microspectroscopy - Topics in Molecular and Structural Biology 75, Macmillan Press (1991), pp. 177-198.

    Google Scholar 

  70. Verwoerd N.P., Hennink E.J., Bonnet J., Van derGeest C.R.G., and Tanke H.J.: Use of ferro-electric liquid crystal shutters for time-resolved fluorescence microscopy, Cytometry 16 (1994), 113–117.

    Article  PubMed  CAS  Google Scholar 

  71. Robert P., Bertrand D., Devaux M.F., and Sire A.: Identification of chemical constituents by multivariate near-infrared spectral imaging, Analyt. Chem. 64 (1992), 664–667.

    Article  CAS  Google Scholar 

  72. Longin A., Souchier C., Ffrench M. and Bryon P.A.: Comparison of anti-fading agents used in fluorescence microscopy: image analysis and laser confocal microscopy study, J. Histochem. Cytochem. 41 (1993), 1833–1840.

    Article  PubMed  CAS  Google Scholar 

  73. Plieth C., Tabrizi H., and Hansen U.P.: Relationship between banding and photosynthetic activity in Chara corallina as studied by the spatially different induction curves of chlorophyll fluorescence observed by an image analysis system, Physiologia Plantarum 91 (1994), 205–211.

    Article  CAS  Google Scholar 

  74. James G.A., Korber D.R., Caldwell D.E., and Costerton J.W.: Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp., J. Bacteriol. 177(1995), 907–915.

    PubMed  CAS  Google Scholar 

  75. Killich T., Plath P.J., Wei X., Bultmann H., Rensing L., and Vicker M.G.: The locomotion, shape and pseudopodial dynamics of unstimulated Dictyostelium cells are not random, J. Cell ScL 106(1993), 1005–1013.

    Google Scholar 

  76. Menzel D.: An interconnected plastidom in Acetabularia: Implications for the mechanism of chloroplast motility, Protoplasma 179 (1994), 166–171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Souchier, C. (1996). Image Analysis In Biology. In: Nicole, M., Gianinazzi-Pearson, V. (eds) Histology, Ultrastructure and Molecular Cytology of Plant-Microorganism Interactions. Developments in Plant Pathology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0189-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0189-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6568-9

  • Online ISBN: 978-94-009-0189-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics