Skip to main content

Abstract

Transplantation of the islets of Langerhans offers the possibility of curing diabetes, but the problem has turned out to be more complex than was envisioned in the early 1970s when the first successful experimental transplants were performed in rodents [1, 2]. Much energy has been devoted to transplantation of human islets obtained from cadaver donors into the liver, via the portal vein of immunosuppressed type I diabetics [3, 4]. These efforts have been disappointing because most have failed within a short period of time. The failures are interesting contrasts to the far more impressive results obtained with whole pancreas transplants and islet autotransplants [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballinger WF and Lacy PE (1972) Transplantation of intact pancreatic islets in rats. Surg 72: 175–186.

    CAS  Google Scholar 

  2. Reckard CR and Barker CF (1973) Transplantation of isolated pancreatic islets across strong and weak histocompatibility barriers. Transplant Proc 5: 761–763.

    PubMed  CAS  Google Scholar 

  3. Lacy PE (1995) Treating Diabetes with Transplanted Cells. Scientific American: 50–58.

    Google Scholar 

  4. Lacy PE (1993) Status of islet cell transplantation. Diabetes Rev 1: 76–92.

    Google Scholar 

  5. Sutherland DE (1992) Pancreatic Transplantation: State of the art. Transplant Proc 24: 762–766.

    PubMed  CAS  Google Scholar 

  6. Pyzdroswki KL, Kendall DM, Halter JB et al (1992) Preserved insulin secretion and insulin independence in recipients of islet autografts. N Engl J Med 327: 220–226.

    Article  Google Scholar 

  7. Lifson N, Lassa CV and Dixit PK (1985) Relation between blood flow and morphology in islet organ of rat pancreas. Am J Physiol 249: E43–E48.

    PubMed  CAS  Google Scholar 

  8. Menger MD, Jaeger S, Walter P et al (1989) Angiogenesis and hemodynamics of microvasculature of transplanted islets of Langerhans. Diabetes 38 (Suppl. 1): 199–201.

    PubMed  Google Scholar 

  9. Menger MD, Vajkoczy P, Beger C et al (1994) Orientation of microvascular blood flow in pancreatic islet isografts. J Clin Invest 93: 2280–2285.

    Article  PubMed  CAS  Google Scholar 

  10. Dionne KE, Coulton CK and Yarmush ML (1993) Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. Diabetes 42: 12–21.

    Article  PubMed  CAS  Google Scholar 

  11. Colton CK and Avgoustiniatos ES (1991) Bioengineering in development of the hybrid artificial pancreas. J Biomechanical Engineering 113: 152–170.

    Article  CAS  Google Scholar 

  12. Dionne KE, Colton CK and Yarmush ML (1991) A Microperifusion system with environmental control for studying insulin secretion by pancreatic tissue. Biotechnol Prog 7: 359–368.

    Article  PubMed  CAS  Google Scholar 

  13. Mukhopadhyay. D, Tslokas L, Zhou X-M et al (1995) Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375: 577–581.

    Article  PubMed  CAS  Google Scholar 

  14. Bretzel RG, Hering BJ, Stroedter D et al (1992) Experimental islet transplantation in small animals. In: Ricordi C (ed) Pancreatic islet cell transplantation, pp 249–260. Austin, Texas: R.G. Landes Company.

    Google Scholar 

  15. Warnock GL, Ao Z, Cattral MS et al (1992) Experimental islet transplantation in large animals. In: Ricordi C (ed) Pancreatic islet cell transplantation, pp 261–278. Austin, Texas: R.G. Landes Company.

    Google Scholar 

  16. Kemp CB, Knight MJ, Scharp DW et al (1973) Effect of transplantation site on the results of pancreatic islet isografts in diabetic rats. Diabetol 9: 486.

    Article  CAS  Google Scholar 

  17. Mellgren A, Schnell-Landstrom AH, Petersson B et al (1986) The renal subcapsular site offers better growth conditions for transplanted mouse pancreatic islet cells than the liver or spleen. Diabetol 29: 670–672.

    Article  CAS  Google Scholar 

  18. Coulombe MG, Warnock GL and Rajotte RV (1988) Reversal of diabetes by transplantation of cryopreserved rat islets of Langerhans to the renal subcapsular space. Diabetes Res 8: 9.

    PubMed  CAS  Google Scholar 

  19. Woehrle M, Markman JF, Beyer K et al (1990) The influence of the implantation site (kidney capsule vs. portal vein) on islet survival. Horm Metab Res (Suppl. 25): 163–165.

    CAS  Google Scholar 

  20. Hiller WF, Klempnauer J, Luck R et al (1991) Progressive deterioration of endocrine function after intraportal but not kidney subcapsular rat islet transplantation. Diabetes 40: 134–140.

    Article  PubMed  CAS  Google Scholar 

  21. Lacy PE, Hegre OD, Gerasimidi-Vazeou A et al (1991) Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 254: 1782–1784.

    Article  PubMed  CAS  Google Scholar 

  22. Juang J-H, Bonner-Weir S, Vacanti JP et al (1995) Outcome of subcutaneous islet transplantation improved by polymer device. Transplantation Proc: in press.

    Google Scholar 

  23. Davalli AM, Scaglia L, Zangen DH et al (1995) Early changes in syngeneic islets grafts: effect of recipient’s metabolic control on graft outcome. Transplantation Proc: in press.

    Google Scholar 

  24. Schwartzman RA and Cidlowski JA (1993) Apoptosis: The biochemistry and molecular biology of programmed cell death. Endocr Rev 14: 133–151.

    PubMed  CAS  Google Scholar 

  25. Andersson A, Eriksson U, Petersson B et al (1981) Failure of successful intrasplenic transplantation of islets from lean mice to cure obese-hyperglycemic mice, despite islet growth. Diabetol 20: 237–241.

    Article  CAS  Google Scholar 

  26. Korsgren O, Jansson L and Andersson A (1989) Effects of hyperglycemia on function of isolated mouse pancreatic islets transplanted under kidney capsule. Diabetes 38: 510–515.

    Article  PubMed  CAS  Google Scholar 

  27. Gray DWR, Cranston D, McShane P et al (1989) The effect of hyperglycemia on pancreatic islets transplanted into rats beneath the kidney capsule. Diabetol 32: 663–667.

    Article  CAS  Google Scholar 

  28. Korsgren O, Jansson L, Sandler Set al (1989) Hyperglycemia-induced B-cell toxicity. the fate of pancreatic islets transplanted into diabetic mice is dependent on their genetic background. J Clin Invest 86: 2161–2168.

    Article  Google Scholar 

  29. Andersson A (1983) The influence of hyperglycemia, hyperinsulinemia and genetic background on the fate of intrasplenically implanted mouse islets. Diabetol 25: 269–272.

    Article  CAS  Google Scholar 

  30. Hayek A, Lopez AD and Beattie GM (1988) Decrease in the number of neonatal islet required for successful transplantation by strict metabolic control of diabetic rats. Transplant 45: 940–942.

    Article  CAS  Google Scholar 

  31. Ar’Rajab A and Ahren B (1992) Prevention of hyperglycemia improves the long term result of islet transplantation in streptozotocin-diabetic rats. Pancreas 7: 435–442.

    Article  PubMed  Google Scholar 

  32. Keymeulen B, Vetri M, Gorus F et al (1993) The effect of insulin treatment on function of intraportally grafted islets in streptozotocin diabetic rats. Transplant 56: 60–64.

    Article  CAS  Google Scholar 

  33. Juang J-H, Bonner-Weir S, Wu Y-J et al (1994) Beneficial influence of glycemic control upon the growth and function of transplanted islets. Diabetes 43: 1334–1339.

    Article  PubMed  CAS  Google Scholar 

  34. Montana E, Bonner-Weir S and Weir GC (1994) Transplanted beta cell response to increased metabolic demand. J Clin Invest 93: 1577–1582.

    Article  PubMed  CAS  Google Scholar 

  35. Weir GC, Bonner-Weir S and Leahy JL (1990) Islet mass and function in diabetes and transplantation. Diabetes 39: 401–405.

    Article  PubMed  CAS  Google Scholar 

  36. Bonner-Weir S (1994) Regulation of pancreatic 0-cell mass in vivo Recent Prog Horm Res 49: 91–104.

    PubMed  CAS  Google Scholar 

  37. Finegood DT, Scaglia L and Bonner-Weir S (1995) (Perspective) Dynamics of B-cell mass in the growing rat pancreas: estimation with a simple mathematical model. Diabetes 44: 249–256.

    Article  PubMed  CAS  Google Scholar 

  38. Bonner-Weir S, Deery D, Leahy JL et al (1989) Compensatory growth of pancreatic B-cells in adult rats after short-term glucose infusion. Diabetes 38: 49–53.

    Article  PubMed  CAS  Google Scholar 

  39. Swenne I (1992) Pancreatic beta-cell growth and diabetes mellitus. Diabetol 35: 193–201.

    CAS  Google Scholar 

  40. Brockenbrough JS, Weir GC, Bonner-Weir S (1988) Discordance of exocrine and endocrine growth after 90% pancreatectomy in rats. Diabetes 37: 232–236.

    Article  PubMed  CAS  Google Scholar 

  41. Alejandro R, Cutfield RG, Shienvold FL et al (1986) Natural history of intrahepatic canine islet cell autografts. J Clin Invest 78: 1339–1348.

    Article  PubMed  CAS  Google Scholar 

  42. Weir GC and Leahy JL (1994) Pathogenesis of non-insulindependent (type II) diabetes mellitus. In: Kahn CR and Weir GC (eds) Joslin’s Diabetes Mellitus, 13th ed, pp 240–264. Philadelphia: Lea and Febiger.

    Google Scholar 

  43. Bonner-Weir S, Baxter LA, Schuppin GT et al (1993) Two pathways for beta cell regeneration of the adult endocrine and exocrine pancreas: A possible recapitulation of embryonic development. Diabetes 42: 1715–1720.

    Article  PubMed  CAS  Google Scholar 

  44. Montana E, Bonner-Weir S and Weir GC (1993) Beta cell mass and growth after syngeneic islet cell transplantation in normal and streptozocin-diabetic C57BL/6 mice. J Clin Invest 91: 780–787.

    Article  PubMed  CAS  Google Scholar 

  45. Matschinsky F, Liang Y, Kesavan Pet al (1993) Glucokinase as pancreatic B cell glucose sensor and diabetes gene. J Clin Invest 92: 2092–2098.

    CAS  Google Scholar 

  46. Davalli AM, Ogawa Y, Scaglia L et al (1995) Function, mass, and replication of porcine and rat islets transplanted into diabetic nude mice. Diabetes 44: 104–111.

    Article  PubMed  CAS  Google Scholar 

  47. Warnock GL, Dwayne DK, Cattral M et al (1989) Viable purified islets of Langerhans from collagenase-perfused human pancreas. Diabetes 38: 136–139.

    PubMed  CAS  Google Scholar 

  48. Miyaura C, Chen L, Appel M et al (1994) Expression of reg/PSP, a pancreatic exocrine gene: relationship to changes in islet 0-cell mass. Mol Endocrinol 5: 226–234.

    Article  Google Scholar 

  49. Bedoya FJ, Matschinsky FM, Shimizu T et al (1986) Differential regulation of glucokinase activity in pancreatic islets and liver of the rat. J Biol Chem 261: 10760–10764.

    PubMed  CAS  Google Scholar 

  50. Samols E, Weir GC and Bonner-Weir S (1986) Infra-islet insulin-glucagon-somatostatin relationships. Clin Endocrinol Metab 15: 33–58.

    Article  PubMed  CAS  Google Scholar 

  51. Weir GC and Bonner-Weir S (1990) Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J Clin Invest 85: 983–987.

    Article  PubMed  CAS  Google Scholar 

  52. Prentki M and Matchinsky FM (1987) Ca 2+, cAMP, and phospolipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 67: 1185–248.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Weir, G.C., Bonner-Weir, S. (1996). Experimental islet transplantation. In: Lanza, R.P., Chick, W.L. (eds) Yearbook of Cell and Tissue Transplantation 1996–1997. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0165-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0165-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6560-3

  • Online ISBN: 978-94-009-0165-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics