Advertisement

Experimental islet transplantation

  • Gordon C. Weir
  • Susan Bonner-Weir

Abstract

Transplantation of the islets of Langerhans offers the possibility of curing diabetes, but the problem has turned out to be more complex than was envisioned in the early 1970s when the first successful experimental transplants were performed in rodents [1, 2]. Much energy has been devoted to transplantation of human islets obtained from cadaver donors into the liver, via the portal vein of immunosuppressed type I diabetics [3, 4]. These efforts have been disappointing because most have failed within a short period of time. The failures are interesting contrasts to the far more impressive results obtained with whole pancreas transplants and islet autotransplants [5, 6].

Keywords

Beta Cell Pancreatic Duct Human Islet Islet Transplantation Beta Cell Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballinger WF and Lacy PE (1972) Transplantation of intact pancreatic islets in rats. Surg 72: 175–186.Google Scholar
  2. 2.
    Reckard CR and Barker CF (1973) Transplantation of isolated pancreatic islets across strong and weak histocompatibility barriers. Transplant Proc 5: 761–763.PubMedGoogle Scholar
  3. 3.
    Lacy PE (1995) Treating Diabetes with Transplanted Cells. Scientific American: 50–58.Google Scholar
  4. 4.
    Lacy PE (1993) Status of islet cell transplantation. Diabetes Rev 1: 76–92.Google Scholar
  5. 5.
    Sutherland DE (1992) Pancreatic Transplantation: State of the art. Transplant Proc 24: 762–766.PubMedGoogle Scholar
  6. 6.
    Pyzdroswki KL, Kendall DM, Halter JB et al (1992) Preserved insulin secretion and insulin independence in recipients of islet autografts. N Engl J Med 327: 220–226.CrossRefGoogle Scholar
  7. 7.
    Lifson N, Lassa CV and Dixit PK (1985) Relation between blood flow and morphology in islet organ of rat pancreas. Am J Physiol 249: E43–E48.PubMedGoogle Scholar
  8. 8.
    Menger MD, Jaeger S, Walter P et al (1989) Angiogenesis and hemodynamics of microvasculature of transplanted islets of Langerhans. Diabetes 38 (Suppl. 1): 199–201.PubMedGoogle Scholar
  9. 9.
    Menger MD, Vajkoczy P, Beger C et al (1994) Orientation of microvascular blood flow in pancreatic islet isografts. J Clin Invest 93: 2280–2285.PubMedCrossRefGoogle Scholar
  10. 10.
    Dionne KE, Coulton CK and Yarmush ML (1993) Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. Diabetes 42: 12–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Colton CK and Avgoustiniatos ES (1991) Bioengineering in development of the hybrid artificial pancreas. J Biomechanical Engineering 113: 152–170.CrossRefGoogle Scholar
  12. 12.
    Dionne KE, Colton CK and Yarmush ML (1991) A Microperifusion system with environmental control for studying insulin secretion by pancreatic tissue. Biotechnol Prog 7: 359–368.PubMedCrossRefGoogle Scholar
  13. 13.
    Mukhopadhyay. D, Tslokas L, Zhou X-M et al (1995) Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375: 577–581.PubMedCrossRefGoogle Scholar
  14. 14.
    Bretzel RG, Hering BJ, Stroedter D et al (1992) Experimental islet transplantation in small animals. In: Ricordi C (ed) Pancreatic islet cell transplantation, pp 249–260. Austin, Texas: R.G. Landes Company.Google Scholar
  15. 15.
    Warnock GL, Ao Z, Cattral MS et al (1992) Experimental islet transplantation in large animals. In: Ricordi C (ed) Pancreatic islet cell transplantation, pp 261–278. Austin, Texas: R.G. Landes Company.Google Scholar
  16. 16.
    Kemp CB, Knight MJ, Scharp DW et al (1973) Effect of transplantation site on the results of pancreatic islet isografts in diabetic rats. Diabetol 9: 486.CrossRefGoogle Scholar
  17. 17.
    Mellgren A, Schnell-Landstrom AH, Petersson B et al (1986) The renal subcapsular site offers better growth conditions for transplanted mouse pancreatic islet cells than the liver or spleen. Diabetol 29: 670–672.CrossRefGoogle Scholar
  18. 18.
    Coulombe MG, Warnock GL and Rajotte RV (1988) Reversal of diabetes by transplantation of cryopreserved rat islets of Langerhans to the renal subcapsular space. Diabetes Res 8: 9.PubMedGoogle Scholar
  19. 19.
    Woehrle M, Markman JF, Beyer K et al (1990) The influence of the implantation site (kidney capsule vs. portal vein) on islet survival. Horm Metab Res (Suppl. 25): 163–165.Google Scholar
  20. 20.
    Hiller WF, Klempnauer J, Luck R et al (1991) Progressive deterioration of endocrine function after intraportal but not kidney subcapsular rat islet transplantation. Diabetes 40: 134–140.PubMedCrossRefGoogle Scholar
  21. 21.
    Lacy PE, Hegre OD, Gerasimidi-Vazeou A et al (1991) Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 254: 1782–1784.PubMedCrossRefGoogle Scholar
  22. 22.
    Juang J-H, Bonner-Weir S, Vacanti JP et al (1995) Outcome of subcutaneous islet transplantation improved by polymer device. Transplantation Proc: in press.Google Scholar
  23. 23.
    Davalli AM, Scaglia L, Zangen DH et al (1995) Early changes in syngeneic islets grafts: effect of recipient’s metabolic control on graft outcome. Transplantation Proc: in press.Google Scholar
  24. 24.
    Schwartzman RA and Cidlowski JA (1993) Apoptosis: The biochemistry and molecular biology of programmed cell death. Endocr Rev 14: 133–151.PubMedGoogle Scholar
  25. 25.
    Andersson A, Eriksson U, Petersson B et al (1981) Failure of successful intrasplenic transplantation of islets from lean mice to cure obese-hyperglycemic mice, despite islet growth. Diabetol 20: 237–241.CrossRefGoogle Scholar
  26. 26.
    Korsgren O, Jansson L and Andersson A (1989) Effects of hyperglycemia on function of isolated mouse pancreatic islets transplanted under kidney capsule. Diabetes 38: 510–515.PubMedCrossRefGoogle Scholar
  27. 27.
    Gray DWR, Cranston D, McShane P et al (1989) The effect of hyperglycemia on pancreatic islets transplanted into rats beneath the kidney capsule. Diabetol 32: 663–667.CrossRefGoogle Scholar
  28. 28.
    Korsgren O, Jansson L, Sandler Set al (1989) Hyperglycemia-induced B-cell toxicity. the fate of pancreatic islets transplanted into diabetic mice is dependent on their genetic background. J Clin Invest 86: 2161–2168.CrossRefGoogle Scholar
  29. 29.
    Andersson A (1983) The influence of hyperglycemia, hyperinsulinemia and genetic background on the fate of intrasplenically implanted mouse islets. Diabetol 25: 269–272.CrossRefGoogle Scholar
  30. 30.
    Hayek A, Lopez AD and Beattie GM (1988) Decrease in the number of neonatal islet required for successful transplantation by strict metabolic control of diabetic rats. Transplant 45: 940–942.CrossRefGoogle Scholar
  31. 31.
    Ar’Rajab A and Ahren B (1992) Prevention of hyperglycemia improves the long term result of islet transplantation in streptozotocin-diabetic rats. Pancreas 7: 435–442.PubMedCrossRefGoogle Scholar
  32. 32.
    Keymeulen B, Vetri M, Gorus F et al (1993) The effect of insulin treatment on function of intraportally grafted islets in streptozotocin diabetic rats. Transplant 56: 60–64.CrossRefGoogle Scholar
  33. 33.
    Juang J-H, Bonner-Weir S, Wu Y-J et al (1994) Beneficial influence of glycemic control upon the growth and function of transplanted islets. Diabetes 43: 1334–1339.PubMedCrossRefGoogle Scholar
  34. 34.
    Montana E, Bonner-Weir S and Weir GC (1994) Transplanted beta cell response to increased metabolic demand. J Clin Invest 93: 1577–1582.PubMedCrossRefGoogle Scholar
  35. 35.
    Weir GC, Bonner-Weir S and Leahy JL (1990) Islet mass and function in diabetes and transplantation. Diabetes 39: 401–405.PubMedCrossRefGoogle Scholar
  36. 36.
    Bonner-Weir S (1994) Regulation of pancreatic 0-cell mass in vivo Recent Prog Horm Res 49: 91–104.PubMedGoogle Scholar
  37. 37.
    Finegood DT, Scaglia L and Bonner-Weir S (1995) (Perspective) Dynamics of B-cell mass in the growing rat pancreas: estimation with a simple mathematical model. Diabetes 44: 249–256.PubMedCrossRefGoogle Scholar
  38. 38.
    Bonner-Weir S, Deery D, Leahy JL et al (1989) Compensatory growth of pancreatic B-cells in adult rats after short-term glucose infusion. Diabetes 38: 49–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Swenne I (1992) Pancreatic beta-cell growth and diabetes mellitus. Diabetol 35: 193–201.Google Scholar
  40. 40.
    Brockenbrough JS, Weir GC, Bonner-Weir S (1988) Discordance of exocrine and endocrine growth after 90% pancreatectomy in rats. Diabetes 37: 232–236.PubMedCrossRefGoogle Scholar
  41. 41.
    Alejandro R, Cutfield RG, Shienvold FL et al (1986) Natural history of intrahepatic canine islet cell autografts. J Clin Invest 78: 1339–1348.PubMedCrossRefGoogle Scholar
  42. 42.
    Weir GC and Leahy JL (1994) Pathogenesis of non-insulindependent (type II) diabetes mellitus. In: Kahn CR and Weir GC (eds) Joslin’s Diabetes Mellitus, 13th ed, pp 240–264. Philadelphia: Lea and Febiger.Google Scholar
  43. 43.
    Bonner-Weir S, Baxter LA, Schuppin GT et al (1993) Two pathways for beta cell regeneration of the adult endocrine and exocrine pancreas: A possible recapitulation of embryonic development. Diabetes 42: 1715–1720.PubMedCrossRefGoogle Scholar
  44. 44.
    Montana E, Bonner-Weir S and Weir GC (1993) Beta cell mass and growth after syngeneic islet cell transplantation in normal and streptozocin-diabetic C57BL/6 mice. J Clin Invest 91: 780–787.PubMedCrossRefGoogle Scholar
  45. 45.
    Matschinsky F, Liang Y, Kesavan Pet al (1993) Glucokinase as pancreatic B cell glucose sensor and diabetes gene. J Clin Invest 92: 2092–2098.Google Scholar
  46. 46.
    Davalli AM, Ogawa Y, Scaglia L et al (1995) Function, mass, and replication of porcine and rat islets transplanted into diabetic nude mice. Diabetes 44: 104–111.PubMedCrossRefGoogle Scholar
  47. 47.
    Warnock GL, Dwayne DK, Cattral M et al (1989) Viable purified islets of Langerhans from collagenase-perfused human pancreas. Diabetes 38: 136–139.PubMedGoogle Scholar
  48. 48.
    Miyaura C, Chen L, Appel M et al (1994) Expression of reg/PSP, a pancreatic exocrine gene: relationship to changes in islet 0-cell mass. Mol Endocrinol 5: 226–234.CrossRefGoogle Scholar
  49. 49.
    Bedoya FJ, Matschinsky FM, Shimizu T et al (1986) Differential regulation of glucokinase activity in pancreatic islets and liver of the rat. J Biol Chem 261: 10760–10764.PubMedGoogle Scholar
  50. 50.
    Samols E, Weir GC and Bonner-Weir S (1986) Infra-islet insulin-glucagon-somatostatin relationships. Clin Endocrinol Metab 15: 33–58.PubMedCrossRefGoogle Scholar
  51. 51.
    Weir GC and Bonner-Weir S (1990) Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J Clin Invest 85: 983–987.PubMedCrossRefGoogle Scholar
  52. 52.
    Prentki M and Matchinsky FM (1987) Ca 2+, cAMP, and phospolipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 67: 1185–248.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Gordon C. Weir
    • 1
  • Susan Bonner-Weir
    • 1
  1. 1.Joslin Diabetes CenterBrigham and Women’s Hospital, Deaconess Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations