Skip to main content

Ligand-Metal Surface Interactions: Synthesis, Structure and Reactivity

  • Chapter
Metal-Ligand Interactions

Part of the book series: NATO ASI Series ((ASIC,volume 474))

  • 171 Accesses

Abstract

Surface chemistry under high pressure of gaseous reactants is often different from surface chemistry at low pressure. For example, many surface chemical reactions proceed readily under high pressure conditions typical of a commercial, heterogeneous catalytic reaction but appear not to proceed at low pressures(<10-4 torr), despite favorable thermodynamics. The different chemistry and, in particular, the lack of reactivity at the low pressures where ultrahigh vacuum surface science techniques are operable is known loosely as the pressure gap and casts doubt on the relevance of UHV surface chemistry to high pressure processes such as catalysis, chemical vapor deposition and etching reactions. One proposal for the origin of this pressure gap in the catalytic reactivity was the presence of a barrier to the dissociative chemisorption of at least one of the reactants [1,2]. Since it is the translational energy of the incident molecule that is important in sunnounting this barrier and not the surface temperature, the rate of the reaction is limited by the flux of incident molecules with energies above the energy of the barrier. High pressures simply increase the absolute number (not the fraction) of high energy molecules, thereby increasing the reaction rate sufficiently for the products to be detected. This hypothesis was verified by the demonstration of the translational activation of C14 on Ni(111) and the ensuing favorable comparison between the rate constants for C14 dissociation calculated from the low pressure dissociation probability measurements and the rates as measured under high pressure conditions [3-5]. The agreement between the low and high pressure experiments carried out in different laboratories formly establishes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ceyer, S., Beckerle, J., Lee, M., Tang, S., Yang, Q., and Hines, M. (1987) Effect of Translational and Vibrational Energy on Adsorption: The Dynamics of Molecular and Dissociative Chemisorption, J. Vac. Sci. Tech. A 5, 501–507.

    Google Scholar 

  2. Lee, M., Yang, Q., and Ceyer, S. (1987) Dynamics of the Activated Dissociative Chemisorption of CH4 and Implication for the Pressure Gap in Catalysis: A Molecular Beam-High Resolution Electron Energy Loss Study, J. Chem. Phys. 87, 2724–2741.

    Article  CAS  Google Scholar 

  3. Ceyer, S. (1990) New Mechanisms for Chemistry at Surfaces, Science 249,133–9.

    Article  CAS  Google Scholar 

  4. Ceyer, S. (1990) Translational and Collision-Induced Activation of CH4 on Ni(lll): Phenomena Connecting Ultra-High-Vacuum Surface Science to High-Pressure Heterogeneous Catalysis, Langmuir 6, 82–87.

    Article  CAS  Google Scholar 

  5. Beebe, Jr.,T.P., Goodman, D.W., Kay, B.D. and Yates, Jr., J.T. (1987) Kinetics of the Activated Dissociative Adsorption of Methane on the Low Index Planes of Nickel Single CRstal Surfaces, J. Chem. Phys. 87, 2305–15.

    Article  CAS  Google Scholar 

  6. Beckerle, J.D., Yang, Q.Y., Johnson, A.D. and Ceyer, S.T. (1987) Collision-Induced Dissociative Chemisorption of Adsorbates: Chemistry with a Hammer, J. Chem. Phys. 86, 7236–7.

    Article  CAS  Google Scholar 

  7. Beckerle, J.D., Johnson, A.D., Yang, Q.Y. and Ceyer, S.T. (1989) Collision Induced Dissociative Chemisorption of CH4 in Ni(111) by Inert Gas Atoms: The Mechanism for Chemistry with a Hammer, J. Chem. Phys. 91, 5756–77.

    Article  CAS  Google Scholar 

  8. Beckerle, J., Johnson, A., and Ceyer, S. (1989) Observation and Mechanism of Collision-Induced Desorption: CH4 on Ni(l 11), Phys. Rev. Lett. 62, 685–688.

    Article  CAS  Google Scholar 

  9. Beckerle, J., Johnson, A., and Ceyer, S. (1990) Collision-Induced Desorption of Physisorbed CH4 from Ni(l11): Experiments and Simulations, J. Chem. Phys. 93, 4047–4065.

    Article  CAS  Google Scholar 

  10. Yang, Q., Maynard, K., Johnson, A., and Ceyer, S. (submitted) The Structure and Chemistry of CH3 and CH Radicals Adsorbed on Ni(l 11), J. Chem. Phys.

    Google Scholar 

  11. Yang, Q.Y., Johnson, A.D., Maynard, KJ. and Ceyer, S.T. (1989) Synthesis of Benzene from Methane over a Ni(l 11) Catalyst, J. Am. Chem. Soc. 1ll, 8748–9.

    Article  Google Scholar 

  12. Maynard, K. Johnson, A., Daley, S., and Ceyer, S. (1991), A New Mechanism of Absorption: Collision Induced Absorption, Faraday Discuss. Chem. Soc. 91, 437–449.

    CAS  Google Scholar 

  13. Johnson, A., Maynard, K., Daley, S., Yang, Q., and Ceyer, S. (1991) Hydrogen Embedded in Ni: Production by Incident Atomic Hydrogen and Detection by High-Resolution Electron Energy Loss, Phys. Rev. Lett. 67, 927–930.

    Article  CAS  Google Scholar 

  14. Ibach, H. and Mills, D. (1982) Electron Energy Loss Spectroscopy and Surface Vibrations, Academic Press, New York.

    Google Scholar 

  15. Demuth, J.E., Ibach, H., and Lehwald, S. (1978) CH Vibration Softening and the Dehydrogenation of Hydrocarbon Molecules on Ni(l11) and Pt(l11), Phys. Rev. Lett. 40, 1044–7.

    Article  CAS  Google Scholar 

  16. McQuillan, GJP. , McKean, D.C., Long, C., Anderson, A.R. and Torto, I. (1986) Vibrational Spectra and Assignments of MeMn(CO)3 and MeRe(CO)3 Species, Energy-Factored and Ai Force Fields, and the Further Effect of Free Internal Rotation,J. Am. Chem. Soc. 108, 863.

    Article  CAS  Google Scholar 

  17. Herzberg, G. (1945) Molecular Spectra and Molecular Structure, II, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand-Reinhold, New York.

    Google Scholar 

  18. Ibach, H. and Bruchmann, D. (1980) Phys. Rev. Lett. 44, 36.

    Article  CAS  Google Scholar 

  19. Berry, A., Dawoodi, Z., Dermoe, A.E., Dickinson, D.M., Downs, AJ., Green, J.C., Green, M.L.H., Hare, P.M., Payne, MP., Rankin, D.W., and Robertson, H.E. (1986) Symmetrical Distortion of the Methyl Group of Methyltrichlorotitanium: Gas Phase Structure and H,H Coupling Constant, J. Chem. Soc., Chem. Comm. 7, 520–2.

    Article  Google Scholar 

  20. Chang, S.C., Hauge, R.H., Billups, WJE., Margrave, J.L., and Kafafi, Z.H. (1988) Low-Temperature Reactions of Methane with Photoexcited Nickel Atoms. Inorg. Chem. 27, 205–6.

    Article  CAS  Google Scholar 

  21. Weissman, H.B., Bernstein, R.B., Rossev, SB., Meister, A.G. and Cleveland, FP. (1955) Substituted Methanes. XXIII. Infrared Spectral Data, Rotational Constants, Normal Coordinate Treatments, and Thermodynamic Properties for CD3BR and CH3Br, J. Chem. Phys. 23, 544.

    Article  CAS  Google Scholar 

  22. Shimanouchi, T. (1977) Natl. Stand. Ref. Serv., Natl. Bur. Stand., No. 39; J. Chem. Ref. Data 6, 993.

    Article  CAS  Google Scholar 

  23. Klein, H.-F., and Karsch, H.H. (1972) Trimethylphosphinkomplexe von Methylnickel Vernbindungen, Chem. Ber. 105, 2628–31.

    Article  CAS  Google Scholar 

  24. Schule, J., Siegbahn, P., and Wahlgren, U. (1988) A Theoretical Study of Methyl Chemisorption on Ni(l11), J. Chem. Phys. 89, 6982–8.

    Article  Google Scholar 

  25. Yang, H., and Whitten, J.L. (1991) Ab Initio Chemisorption Studies of CH3 on Ni(lll), J. Am. Chem. Soc. 113, 6442–9.

    Article  CAS  Google Scholar 

  26. Brookhart, M., and Green, M.L.H. (1983) Carbon-Hydrogen Transition Metal Bonds, J. Organomet. Chem. 250, 395–408.

    Article  CAS  Google Scholar 

  27. Gavin, Jr., R.M. Reutt, J., and Meutterties, E.L. (1981) Metal-Hydrogen Bridge Bonding of Hydrocarbons on Metal Surfaces, Proc. Natl. Acad. Sci. 78, 3981–5.

    Article  CAS  Google Scholar 

  28. Yang, H. and Whitten, J.L. (1991) Chemisorption of Atomic H and CHX Fragments on Ni(lll), Surf. Sci. 255, 193–207.

    Article  CAS  Google Scholar 

  29. de Koster, A., and van Santen, R.A. (1991) Molecular Orbital Studies of the Adsorption of CH3, CH2, and CH on Rh(l11) and Ni(l11) Surfaces, J. Catal. 127, 141–66.

    Article  Google Scholar 

  30. Oxton, I.A. (1982) Vibrational Spectra of Metal Cluster Complexes Containing the Methylidyne Ligand: H3Rμ3(μ3-CH)(CO)9 and H3Rμ3(μ-CCl)(CO)9, Spectrochim. Acta 38A, 181–4.

    CAS  Google Scholar 

  31. Howard, M.W., Kettle, S.F., Oxton, I.A., Powell, D.B., Shepperd, N.,and Skinner, P. (1981) Vibrational Spectra and the Force Field of the HCCo3 Group in HCCo3(DCO)9, J. Chem. Soc. Faraday Trans II 77, 397–404.

    Article  CAS  Google Scholar 

  32. Sexton, B.A., and Mitchell, G.E., (1980) Vibrational Spectra of Ammonia Chemisorbed on Platinum (111), Surf. Sci. 99, 523–38.

    Article  CAS  Google Scholar 

  33. Fisher, G.E., and Mitchell, G.E. (1983) A Vibrational Study of Ammonia Chemisorbed on Ni(l10) and Ni(lll): Whither Goest the Metal-Nitrogen Stretching Mode on FCC (111) Surfaces?, J. Elect. Spec. Rel. Phenom. 29, 253–9.

    Article  CAS  Google Scholar 

  34. Demuth, Jan d Ibach, H. (1978) Identification of CH Species on Ni (111) by High Resolution Electron Energy Loss Spectroscopy, Surf. Sci. 78, L238–44.

    Article  Google Scholar 

  35. Maynard, KJ., Yang, Q.Y., Johnson, A.D. XANDXCeyer, S.T., to be published.

    Google Scholar 

  36. Ibach, H., and Lehwald, S. (1981) Angular Profiles in EELS and the Assignment of Vibrational Modes, J. Vac. Sci. Tech. 18, 625–8.

    Article  CAS  Google Scholar 

  37. Belgued, M., Pareja, P., Amariglio, A. and Amariglio, H. (1991) Conversion of Methane into Higher Hydrocarbons on Pt, Nature 352, 789–90.

    Article  CAS  Google Scholar 

  38. Koerts, T., Deelen, M J., and van Santen, R. (1992) Hydrocarbon Formation from Methane by a Low Temperature Two Step Reaction Sequence, J. Catal. 138, 101–14.

    Article  CAS  Google Scholar 

  39. Lenz-Solomun, P., Wu, M.C. and Goodman, D.W. (1994) Catal. Lett. 25, 75.

    Article  CAS  Google Scholar 

  40. Smith, H., Chadwell Jr., A., and Kirslis, S. (1955) The Role of Hydrogen in Raney Nickel Catalyst, J. Phys. Chem. 59, 820–822.

    Article  CAS  Google Scholar 

  41. Kokes, R. and Emmet, P. (1959) The Activity of Raney Nickel as a Function of Hydrogen Content, J. Am. Chem. Soc. 82, 4497–4501.

    Article  Google Scholar 

  42. Palcezewska, W. (1988) Catalytic Properties of Metal Hydrides, Hydrogen Effects in Catalysis, 373.

    Google Scholar 

  43. Molnir, A. and Smith, G. (1988) Hydrogen Effects in Organic Hydrogenations, ibid., 499–520.

    Google Scholar 

  44. Gajardo, P., Lartiga, M., and Droguett, S. (1978) Hydrogenation of Ethylene in Granular Copper: Promoter Effect of Hydrogen, J. Phys. Chem. 82, 2323–2328.

    Article  CAS  Google Scholar 

  45. Nakabayashi, I., Hisano, T., and Terazawa, T. (1979) Activity and Hydrogen Content of a Plate-Type Raney Nickel Catalyst, J. Cat. 58, 74–81.

    Article  CAS  Google Scholar 

  46. Matsuyama, M., Ashida, K., Takayasu, O., and Takeuchi, T. (1986) Catalytic Activities of Ni Alloys Expressed by Surface and Bulk Compositions, J. Cat. 102, 309–315.

    Article  CAS  Google Scholar 

  47. Kokes, R. (1972) Some Aspects of Catalysis: The P.H. Emmett Award Address, Catal. Rev. 6, 1–20.

    Article  CAS  Google Scholar 

  48. Wells, P. (1978) The Influence on Selectivity of the Environment of Catalyst Sites, J. Catal 52, 498–506.

    Article  CAS  Google Scholar 

  49. Fouilloux, P. (1983) The Nature of Raney Ni: Adsorbed Hydrogen and Its Catalytic Activity for Hydrogenation Reactions, Appl. Catal. 8,1.

    Article  CAS  Google Scholar 

  50. Christmann, K., Schober, O., Ertl, G., and Neumann, M. (1974) Adsorption of Hydrogen on Nickel Single CRstal Surfaces, J. Chem. Phys. 60, 4528–4540.

    Article  CAS  Google Scholar 

  51. Winkler, A. and Rendulic, K. (1982) Adsorption Kinetics for Hydrogen Adsorption on Nickel and Coadsorption of Hydrogen and Oxygen, Surf. Sci. 118, 19–31.

    Article  CAS  Google Scholar 

  52. Comsa, G., David, R., and Rendulic, K. (1977) Velocity Distributions of H2, D2 and HD Desorbing from PolyCRstalline Nickel Surfaces,Phys. Rev. Lett. 38, 775–778.

    Article  CAS  Google Scholar 

  53. Alefeld, G. and Völkl, J. (1978) Hydrogen in Metals 1, 326.

    Google Scholar 

  54. McLellan, R. and Oates, W. 1973 Acta Metallurgica 21, 181.

    Article  CAS  Google Scholar 

  55. Seah, M. and Dench, W. (1979) Quantitative Electron Spectroscopy of Surfaces: A Standard Data Base for Electron Inelastic Mean Free Paths in Solids, Surf. Sci. and Interface Analysis 1, 2–11.

    Article  CAS  Google Scholar 

  56. Wollan, E., Cable, J., and Koehler, W. (1965) Hydrogen Atom Positions in Face Centered Cubic Nickel Hydride,J. Phys. Chem.Solids 24, 1141–1143.

    Article  Google Scholar 

  57. Kelley, R. and Goodman, D. (1982) The Methanation Reaction, Chemical Physics of Solid Surfaces and Heterogeneous Catalysis 4, 427–454.

    CAS  Google Scholar 

  58. Johnson, A., Daley, S., Utz, A., and Ceyer, S. (1992) The Chemistry of Bulk Hydrogen: Reaction of Hydrogen Embedded in Nickel with Adsorbed CH3, Science 257, 223–225.

    Article  CAS  Google Scholar 

  59. Horiuti, J., and Polanyi, M. (1934) Exchange Reactions of Hydrogen on Metallic Catalysts, Trans. Faraday Soc. 30, 1164–1172.

    Article  Google Scholar 

  60. Daley, S., Utz, A., Trautman, T., and Ceyer, S. (1994) Ethylene Hydrogenation on Ni(l11) by Bulk Hydrogen, J. Am. Chem. Soc. 116, 6001–6002.

    Article  CAS  Google Scholar 

  61. Hammer, L., Hertlein, T., and Mttller, K. (1986) Ordered Phases of C2H2 and C2H4 on the Ni(l11) Face, Surf. Sci. 178, 693–703.

    Article  CAS  Google Scholar 

  62. Lehwald, S., and Ibach, H. (1979) Decomposition of Hydrocarbons on Flat and Stepped Ni(lll ) Surfaces, Surf. Sci. 89, 425–445.

    Article  CAS  Google Scholar 

  63. Schlegel, H. (1982) Ab Initio Molecular Orbital Studies of H + C2H4 and F + C2H4, J. Phys. Chem. 86, 4878.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ceyer, S.T. (1996). Ligand-Metal Surface Interactions: Synthesis, Structure and Reactivity. In: Russo, N., Salahub, D.R. (eds) Metal-Ligand Interactions. NATO ASI Series, vol 474. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0155-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0155-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6556-6

  • Online ISBN: 978-94-009-0155-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics