Advertisement

On the Automatic Differentiation of Computer Programs and an Application to Multibody Systems

  • Christian H. Bischof
Part of the Solid Mechanics and its Applications book series (SMIA, volume 43)

Abstract

Automatic differentiation (AD) is a methodology for developing sensitivity-enhanced versions of arbitrary computer programs. In this paper, we provide some background information on AD and address some frequently asked questions. We introduce the ADIFOR and ADIC tools for the automatic differentiation of Fortran 77 and ANSI-C programs, respectively, and give an example of applying ADIFOR in the context of the optimization of multibody systems.

Keywords

Multibody System Reverse Mode Argonne National Laboratory Automatic Differentiation Forward Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dieter Bestle. Analyse und Optimierung von Mehrkörpersystemen. Springer, Berlin, 1994.Google Scholar
  2. 2.
    Dieter Bestle and Peter Eberhard. Analyzing and optimizing multibody systems. Mechanical Structures and Machinery, 20(1):67–92, 1992.CrossRefGoogle Scholar
  3. 3.
    Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR: Generating derivative codes from Fortran programs. Scientific Programming, 1(1):11–29, 1992.Google Scholar
  4. 4.
    Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. The ADIFOR 2.0 system for the automatic differentiation of Fortran 77 programs, 1994. Preprint MCS-P481-1194, Mathematics and Computer Science Division, Argonne National Laboratory, and CRPC-TR94491, Center for Research on Parallel Computation, Rice University.Google Scholar
  5. 5.
    Christian Bischof and Andrew Mauer. ADIC – A tool for the automatic differentiation of C programs. Preprint MCS-P499-0295, Mathematics and Computer Science Division, Argonne National Laboratory, 1995.Google Scholar
  6. 6.
    Christian Bischof, Greg Whiffen, Christine Shoemaker, Alan Carle, and Aaron Ross. Application of automatic differentiation to groundwater transport models. In Alexander Peters et al., editors, Computational Methods in Water Resources X, pages 173–182. Kluwer Academic Publishers, Dordrehct, 1994.Google Scholar
  7. 7.
    Francois Bodin, Peter Beckman, Dennis Gannon, Jacob Goutwals, Srinivas Narayana, Suresh Srinivas, and Beata Winnicka. SAGE++: An object-oriented toolkit and class library for building Fortran and C++ restructuring tools. In Proceedings of the Second Annual Object-Oriented Numerics Conference. IEEE, 1994.Google Scholar
  8. 8.
    D. Callahan, K. Cooper, R. T. Hood, K. Kennedy, and L. M. Torczon. ParaScope: A parallel programming environment. International Journal of Supercomputer Applications, 2(4):84–99, December 1988.CrossRefGoogle Scholar
  9. 9.
    Herbert Fischer. Special problems in automatic differentiation. In Andreas Griewank and George F. Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and Application, pages 43 – 50. SIAM, Philadelphia, Penn., 1991.Google Scholar
  10. 10.
    Andreas Griewank. On automatic differentiation. In Mathematical Programming: Recent Developments and Applications, pages 83–108. Kluwer Academic Publishers, Amsterdam, 1989.Google Scholar
  11. 11.
    Andreas Griewank, Christian Bischof, George Corliss, Alan Carle, and Karen Williamson. Derivative convergence of iterative equation solvers. Optimization Methods and Software, 2:321–355, 1993.CrossRefGoogle Scholar
  12. 12.
    Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices by the Markowitz rule. In Andreas Griewank and George F. Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and Application, pages 126–135. SIAM, Philadelphia, 1991.Google Scholar
  13. 13.
    Uli Häußermann. Automatische Differentiation zur Rekursiven Bestimmung von Partiellen Ableitungen. STUD-102, Institut B für Mechanik, Universität Stuttgart, 1993.Google Scholar
  14. 14.
    E. Kreuzer and G. Leister. Programmsystem NEWEUL’90. Technical Report Anleitung AN-24, Institut B für Mechanik, Universität Stuttgart, 1991.Google Scholar
  15. 15.
    G. Leister and W. Schiehlen. Benchmark-beispiele des DFG-schwerpunktprogramms dynamic von mehrkörpersystemen. Technical Report Zwischenbericht ZB-64, Band 2, Institut B für Mechanik, Universität Stuttgart, 1991.Google Scholar
  16. 16.
    Louis B. Rail. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture Notes in Computer Science. Springer Verlag, Berlin, 1981Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Christian H. Bischof
    • 1
  1. 1.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations