Advertisement

Classification of differential (n — 1)-forms on an n-dimensional manifold with boundary

  • Wojciech Domitrz
Part of the Mathematics and Its Applications book series (MAIA, volume 350)

Abstract

In this paper we classify differential n-forms and (n — 1)-forms on an n-dimentional manifold with boundary with respect to the equivalence defined by pullback via a diffeomorphism, which preserves the manifold together with its boundary. We present a complete list of the locally stable n-forms. We also classify all the stable (n — 1)-forms, provided a kernel of these forms meets the boundary transversally. We show that a 1-form on a 2-dimensional manifold, which does not satisfy the above condition, is not locally stable.

Keywords

Vector Field Smooth Function Stable Mapping Symplectic Structure Smooth Hypersurface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko: Singularities of differentiable maps vol. I, Birkhäuser, Boston, 1985.zbMATHCrossRefGoogle Scholar
  2. 2.
    V.I. Arnold: Critical points of functions on a manifold with boundary, the simple Lie groups B k, C k and F k and singularities of evolutes, Uspekhi Matematicheskykh Nauk, 33(5), (1978), 91–105.Google Scholar
  3. 3.
    W. Domitrz, S. Janeczko: Normal forms of symplectic structures on the stratified spaces, to be published in Colloquium Mathematicum.Google Scholar
  4. 4.
    W. Domitrz, S. Janeczko: On Martinet’s singular symplectic structures, to be published in Banach Center Publications 1995.Google Scholar
  5. 5.
    M. Golubitsky, D. Tischler: A survey on the singularities and stability of differential forms, Asterisque, 59-60 (1978), 43–82.MathSciNetGoogle Scholar
  6. 6.
    M. Golubitsky, D. Tischler: An example of moduli for singular symplectic forms, Inventiones Math., 38 (1977), 219–225.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    M. Golubitsky, D. Tischler: On local stability of differential forms, Trans. A.M.S., 223 (1970), 205–221.MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Golubitsky, V. Guillemin: Stable mappings and their singularities, Springer-Verlag, 1973.Google Scholar
  9. 9.
    J. Martinet: Surles singularitesdés formes differentielles, Ann. Inst. Fourier (Grenoble), 20 (1970), 95–178.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    J. Martinet: Singularities of smooth functions and maps, Cambridge Univ. Press, Cambridge 1982.Google Scholar
  11. 11.
    J. Moser: On volume elements on manifolds, Trans. A.M.S., 120, 2 (1965), 280–296.CrossRefGoogle Scholar
  12. 12.
    R. Roussarie: Modèles locaux de champs et de formes, Astérisque, 30, (1975), 1–181.MathSciNetGoogle Scholar
  13. 13.
    M. Zhitomirskii: Typical singularities of differential 1-forms and Pfaffian equations, Translations of Mathematical Monographs, vol 113, A.M.S., Providence, RI, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Wojciech Domitrz
    • 1
  1. 1.Institute of MathematicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations