Advertisement

Do Massive Neutrinos Ionize Intergalactic HI ?

  • M. Roos
  • S. J. Bowyer
  • M. Lampton
  • T. Peltoniemi
Part of the International Astronomical Union/Union Astronomique Internationale book series (IAUS, volume 168)

Abstract

The radiative decay of massive relic 30eV neutrinos could explain several observational puzzles including the missing dark matter in the universe and the anomalous degree of ionization of interstellar matter in the Galaxy. We note that various non-standard particle physics models with extended scalar sector or minimal supersymmetry have sufficient freedom to accommodate such neutrinos. We discuss observational constraints in the immediate Solar neighborhood, in nearby regions of low interstellar absorption, in the Galactic halo, in clusters of galaxies, and in extragalactic space. Although some observations have been interpreted as ruling out this picture, we note that this is true only for models in which extreme concentrations of neutrinos occur in clusters of galaxies. An instrument is under development to measure the cosmic diffuse EUV background in the local Solar neighborhood, for flight on the Spanish Minisat satellite platform. This instrument will have the capability of providing a definitive test of the radiative neutrino decay hypothesis.

Keywords

Dark Matter Massive Neutrino Electromagnetic Coupling Galactic Halo Neutrino Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.E. Gunn and B.A. Peterson, Astrophys J. 142 (1965) 1633ADSCrossRefGoogle Scholar
  2. 2.
    Y. Rephaeli and A. S. Szalay, Phys. Lett. B 106B (1981) 73. ADSGoogle Scholar
  3. 3.
    D. W. Sciama, Mon. Not. R. Astron. Soc. 198 (1982) IP. Google Scholar
  4. 4.
    A. L. Melott et. al., Astrophys. J. 324 (1988) L43, ibid 421 (1994) 16. Google Scholar
  5. 5.
    D.W. Sciama, Nature 346 (1990) 40; Astrophys. J. 364 (1990) 549; Comments Astrophys, Space Phys. 15 (1990) 71; Phys. Rev. Lett. 65 (1990) 2839Google Scholar
  6. 6.
    L. Montanet. et. al., (Particle Data Group), Phys. Rev. D 50 Part II (1994) 1.1. Google Scholar
  7. 7.
    J. Schechter and J.W.F Valle, Phys. Rev. D 24 (1981) 1883ADSCrossRefGoogle Scholar
  8. 8.
    M.Fukugita and T.Yanakida, Phys. Rev. Lett. 58 (1987) 1807ADSGoogle Scholar
  9. 9.
    K. S. Babu and V. S. Mathur, Phys. Lett. B 196 (1987) 218. ADSCrossRefGoogle Scholar
  10. 10.
    A. Zee, Phys. Lett. 93B (1980) 389. ADSGoogle Scholar
  11. 11.
    S. Bowyer, M.Lampton, J.T Peltoniemi and M. Roos (in preparation,1994)Google Scholar
  12. 12.
    J. Holberg, and H. B. Barber, Astrophys. J. 292 (1985) 16. ADSCrossRefGoogle Scholar
  13. 13.
    R. Kimble, S. Bowyer, and P. Jakobsen, Phys. Rev. Lett. 46 (1981) 80. ADSCrossRefGoogle Scholar
  14. 14.
    C. Martin, M. Hurwitz, and S. Bowyer, Astrophys. J. 379 (1991) 549. ADSCrossRefGoogle Scholar

Copyright information

© International Astronomical Union 1996

Authors and Affiliations

  • M. Roos
    • 1
  • S. J. Bowyer
    • 2
  • M. Lampton
    • 2
  • T. Peltoniemi
    • 3
  1. 1.High Energy Physics LaboratoryUniversity of HelsinkiFinland
  2. 2.Center for EUV AstrophysicsUniversity of CaliforniaBerkeleyUSA
  3. 3.International School for Advanced StudiesTriesteItaly

Personalised recommendations