Advertisement

Inflation, Microwave Background Anisotropy, and Open Universe Models

  • J. A. Frieman
Part of the International Astronomical Union/Union Astronomique Internationale book series (IAUS, volume 168)

Abstract

The inflationary scenario for the very early universe has proven very attractive, because it can simultaneously solve a number of cosmological puzzles, such as the homogeneity of the Universe on scales exceeding the particle horizon at early times, the flatness or entropy problem, and the origin of density fluctuations for large-scale structure [1]. In this scenario, the observed Universe (roughly, the present Hubble volume) represents part of a homogeneous inflated region embedded in an inhomogeneous space-time. On scales beyond the size of this homogeneous patch, the initially inhomogeneous distribution of energy-momentum that existed prior to inflation is preserved, the scale of the inhomogeneities merely being stretched by the expansion.

Keywords

Spatial Curvature Open Universe Observable Universe Inflationary Scenario Hubble Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review see K. A. Olive, Phys. Rep. C 190, 307 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    See, e.g., S. Kent and J. Gunn, Astron. J. 87, 945 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    S. D. M. White et al., Nature 366, 429 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    S. Lilly, Ap. J 333, 161 (1988)ADSCrossRefGoogle Scholar
  5. K. C. Chambers and S. Chariot, Ap.J. 348, L1 (1990)ADSCrossRefGoogle Scholar
  6. K. C. Chambers, et al., Ap. J. 363, 21 (1990)ADSCrossRefGoogle Scholar
  7. 5.
    J. Uson et al., Phys. Rev. Lett. 67, 3328 (1992)ADSCrossRefGoogle Scholar
  8. M. Giavalisco et. al., Ap. J. 425, L5 (1994)ADSCrossRefGoogle Scholar
  9. A. Kashlinsky, Ap. J. 406, LI (1993)ADSCrossRefGoogle Scholar
  10. 6.
    A. Dekel, Ann. Rev. Astr. Astrophys., in press (1994)Google Scholar
  11. 7.
    A. Kashlinsky, Ap. J. 386, L37 (1992), and in “Evolution of the Universe and its observational quest”, ed. K. Sato, in press (1994)Google Scholar
  12. R. Scaramella et. al., Ap. J. 422, 1 (1994)ADSCrossRefGoogle Scholar
  13. 8.
    M. Fukugita and E. L. Turner, MNRAS 253, 99 (1991)Google Scholar
  14. D. Maoz and H. W. Rix, Ap. J. 416, 425 (1993)ADSCrossRefGoogle Scholar
  15. C. Kochanek, Ap. J. 419, 12 (1993)ADSCrossRefGoogle Scholar
  16. 9.
    J. R. Gott, Nature 295, 304 (1982)ADSCrossRefGoogle Scholar
  17. G. F. R. Ellis, Class. Quantum Grav. 5, 891 (1988)ADSCrossRefGoogle Scholar
  18. P. Steinhardt, Nature 345, 47 (1989)ADSCrossRefGoogle Scholar
  19. D. H. Lyth and E. D. Stewart, Phys. Lett. B252, 336 (1990)ADSGoogle Scholar
  20. B. Ratraand P. J. E. Peebles, preprints PUPT-1444, PUPT- 1445 (1994)Google Scholar
  21. M. Bucher, A. S. Goldhaber, and N. Turok, preprint PUPT-94-1507 (1994)Google Scholar
  22. 10.
    L. Grischuk and Ya. B. Zeldovich, Sov. Astron. 22, 125 (1978)ADSGoogle Scholar
  23. 11.
    G. Smoot et al Ap. J. 396, LI (1992)CrossRefGoogle Scholar
  24. C. Bennett et al. Ap. J. (1994), submittedGoogle Scholar
  25. 12.
    M. Turner, Phys. Rev. D 44, 3737 (1991)ADSCrossRefGoogle Scholar
  26. 13.
    L. Grischuk, Phys. Rev. D 45, 4717 (1992)ADSCrossRefGoogle Scholar
  27. 14.
    A. Kashlinsky, I. Tkachev, and J. Frieman, Phys. Rev. Lett. 73, 1582 (1994)ADSCrossRefGoogle Scholar
  28. 15.
    D.S. Goldwirth and T. Piran, Phys. Rev. Lett. 64, 2852 (1990)ADSCrossRefGoogle Scholar
  29. 16.
    M. Wilson, Ap. J. 253, L53 (1983)ADSCrossRefGoogle Scholar
  30. L. F. Abbott and R. K. Scliaefer, Ap. J. 308, 546 (1986)ADSCrossRefGoogle Scholar
  31. J. Traschen and D. Eardley, Phys. Rev. D 34, 1665 (1986), and the last two references in [9]ADSCrossRefGoogle Scholar
  32. M. Kamionkowski and D. Spergel, preprint IASSNS- HEP-93/73 (1993)Google Scholar
  33. 17.
    V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. C 215, 203 (1992)MathSciNetADSCrossRefGoogle Scholar
  34. 18.
    J. Bardeen, Phys. Rev. D 22, 1882 (1980)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. A. Frieman
    • 1
  1. 1.Fermi National Accelerator LaboratoryNASA/Fermilab Astrophysics CenterBataviaUSA

Personalised recommendations