Advertisement

MARKAL-Geneva: A model to assess energy-environment choices for a Swiss canton

  • E. Fragniere
  • A. Haurie
Part of the Economics, Energy and Environment book series (ECGY, volume 5)

Abstract

This paper presents the implementation of a comprehensive energy-environment model for the “Canton de Genève” in Switzerland. The approach is based on the use of a standard energy systems analysis model called MARKAL(MARket ALlocation), which has been implemented in more than 16 countries, including Switzerland (see Abilock et al. (1979); Altdorfer et al. (1979); Berger et al. (1992); Service de l’énergie (1991); Kypreos (1992)). The modelling, through MARKAL, of energy systems at the level of a small community was first promoted by a team of Chalmers University (Sweden) and our model is influenced by Wene and Andersson (1982) and Wene and Ryden (1988). In representing energy and technology choices at such a local level it is imperative to represent the nonlinearities, due in particular to the indivisibility of projects. It is also important to take explicitly into account the uncertainties in the definition of scenarios. This model will be among the first to include, in a MARKAL exercise, an integer and a stochastic programming approach.

Keywords

Energy System Heat Pump Mixed Integer Programming Energy Service District Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abilock, H., Bergstrom, C, Brady, J., Doernberg, A., Ek, A., Fishbone, L., Hill, D., Hirano, M., Karvanagh, R., Koyama, S., Larsson, K., Leman, G., Love, P., Moy, M., Sailor, V., Sato, O., Shore, F., Sira, T., Teichman, T., and Wene, C-O, (1979). “MARKAL - A multiperiod linear programming model for energy system analysis”, in Kavanagh, R. (Ed.), Proc. Int. Conf. on Energy Systems Analysis 9–11 Oct., Dublin, Ireland, p. 482, Reidel, Dordrecht.Google Scholar
  2. Aebischerc, B., Kanala, R., Pain, D., Giovannini, B. (1988). “Perspectives de la demande d’énergie en Suisse, 1985–2025”, Centre Universitaire d’Etude des problèmes de l’Energie, Université de Genève, Groupe d’experts scenarios énergétiques, Série de publications No. 18, Berne.Google Scholar
  3. Aebisher, B., Giovannini, B. (1989). “Evaluation du potentiel d’énergie en Suisse”, 34, Centre universitaire d’étude des problèmes de l’énergie.Google Scholar
  4. Aebischer, B., Kanala, R., Giovannini, B. (1988). “Perspectives de la demande d’énergie en Suisse, 1985–2025, Annexe 1: Inputs essentiels pour revaluation de la demande influen-cée”, Centre Universitaire d’Etude des problèmes de l’Energie, Université de Genève, Groupe d’experts scenarios énergétiques, Série de publications No. 18; annexe 1, Berne.Google Scholar
  5. Ahn, B.H., Hogan, W.W. (1982). “On convergence of the PIES Algorithm for computing Equilibria”, Operations Research 30(2).CrossRefGoogle Scholar
  6. Altdorfer, F., Blasco, M., Egberts., G., Finnis, M., Gunderman, J., Leimkuehler, K., Manthey, C, Ponitz, E., Rath-Nagel, St., Tosato, G. (1980). “Energy modelling as an instrument for an international strategy for energy research, development and demonstration”, in Kavanagh, R. (Ed.), Proc. Int. Conf. on Energy Systems Analysis 9–11 Oct. 1979, Dublin, Ireland, p. 140, Reidel, Dordrecht.Google Scholar
  7. Bahn, O., du Merle O., Goffin, J L, and Vial, J -P. (1994). “A Cutting Plane Method from Analytic Centers for Stochastic Programming”, Université, de Genève.Google Scholar
  8. Bahn, O., Haurie, A., Kypreos, S., and Vial, J -P (1993). “Coupling MARKAL Models Under Global CO2 constaints”, International Workshop on Operations Research and Environmental Management.Google Scholar
  9. Berger, C, Haurie, A., and Loulou, R. (1987). “Modélisation des choix technologiques et énergétiques à long terme dans l’approche MARKAL”, Les cahiers du GERAD, GERAD, Ecole des H.E.C., Montréal, Canada.Google Scholar
  10. Berger, C., Dubois, R., Haurie, A., and Loulou, R. (1990). “Modelling Electricity Trading in the Northeast”, Proceedings of the 1990 IAEE Conference, (International Assoc. of Energy Economists)(Ottawa).Google Scholar
  11. Berger, C., Dubois, R., Haurie, A., Lessard, E., Loulou, R., and Waaub, J -P. (1992). “Canadian Markal: An advanced Linear Programming System for Energy and Environmental Modelling”, Cahier du GERAD (G-90–53).Google Scholar
  12. Berger, C., Dubois, R., Haurie, A., Lessard, E., Loulou, R., and Waaub, J -P. (1992). “Canadian Markal: An advanced Linear Programming System for Energy and Environmental Modelling”, Cahier du GERAD (G-90–53).Google Scholar
  13. Berger, C, Fuller, D., Haurie, A., Loulou, R., Luthra, D., and Waaub, J.-P. (1990). “Modelling Energy Use in the Mineral Processing Industries of Ontario with MARKAL-Ontario”, Energy 15(9), pp. 741–758.CrossRefGoogle Scholar
  14. Berger, C, Haurie, A., Savard, G., Loulou, R., Lafrance, G., and Surprenant, J.P. (1987). “MEDEQ-MARKAL un Couplage entre ceux modèles techno-économiques du Systeme énergétique du Quebec, RAIRO, 21(1), pp. 21–50.Google Scholar
  15. Berger, C, Haurie, A., Lessard, E., Loulou, R., and Waaub, J.P. (1989). “Implementation of the MARKAL-Quebec energy model with emission factors, abatment technologies, and S02 constraints”, Proceedings of the International RISO conference on Environmental Models, Riso, Denmark, pp. 215–227.Google Scholar
  16. Berger, C, Lessard, E., Loulou, R., and Waaub, J-P. (1989). “Implementation of the MARKAL-Quebec Energy Model with Emissions Factors, Abatement Technologies, and S02 Constraints”, Development in environmental Modelling, 15 (RISO International Conference).Google Scholar
  17. CEC (1988). Optimal Control Strategies for reducing Emissions from Energy Conversion and Energy Use Commission of the European Communities, Brussels.Google Scholar
  18. Cherniavsky, E. (1974). Broohaven Energy System Optmisation Model, Topical Report No. 19569, Brookhaven National Laboratory, Upton, N.Y.Google Scholar
  19. CPLEX Mixed Integer Library (1989). Cplex Optimizations, USA.Google Scholar
  20. Dantzig, G.B. and Wolfe, P. (1961). “The decomposition algorithm for linear programming”, Econometrica 29(4), 767–778.CrossRefGoogle Scholar
  21. Dantzig, G. B. and Infanger, G. (1992). “Approaches to Stochastic Programming with Appications to Electric Power Systems”, Optimization in Planning and Operation of Electric Power systems, Tutorial ASRO, Switzerland.Google Scholar
  22. Edwards, J., Birge, J., King, A., and Nazareth, L. (1985). “A standard input format for computer codes which solves stochastic programs with recourse and library of utilities to simplify its use”, International Institute for Applied Systems Analysis, Working Paper WP-85–03. Google Scholar
  23. EFOM-12-C (1985). Energy Supply Modelling Package Mathematical Description, E. Van der Voot, Belgium.Google Scholar
  24. Eppen, G.D., Martin, R.K., and Shrage, L. (1989). “A scenario approach to capacity planning”, Operations Reaserch 37, 517–527.CrossRefGoogle Scholar
  25. ETSAP (1988). Annual Report, Implementing Agreement for a Programme of Energy Technology Systems Analysis Annex III International Forum for Energy-Environmental Studies, Committee on Research and Development, International Energy Agency.Google Scholar
  26. Extraits de textes constitutionnels, législatifs et réglementaires relatifs à l’énergie, Rapport interne, Département de l’économie publique, juillet 1990.Google Scholar
  27. Fishbone, L.G. and Abilock, H. (1981). “MARKAL, a linear-programming model for energy systems analysis: Technical description of the BNL Version”, International Journal of Energy Research 5, 353–375.CrossRefGoogle Scholar
  28. Fishbone, L G., Giesen, G., Goldstein, G., Hymmen, H A., Stocks, K J., Vos, H., Wilde, D., Zoelcher, R., Balzer, C, and Abilock, H. (1983). “User’s guide for MARKAL (BNL/KFA Version 2.0): A multi-period, linear programming model for energy systems analysis”, IEA Energy Technology Systems Analysis Project, Brookhaven National Laboratory, Upton, New York, U.S.A, and Kernforschungsanlage Juelich, Germany, Report BNL 51701.Google Scholar
  29. Fragnière E. (1992). Modèle d′adèquation offre-demande a long terme de la prestation de chauffage dans les secteurs résidentiel et commercial du Canton de Genève, technical reports, University of Geneva, Geneva.Google Scholar
  30. Goffin, J.-L., Haurie, A., and Vial, J.-P. (1992). “Decomposition and nondifferentiable optimization with the projective algorithm”, Manuscript, Département d’Economie Commerciale et Industrielle, University of Geneva (July 1989), to appear in Management Science.Google Scholar
  31. Goffin, J.-L., Haurie, A., Vial, J-P., and Zhu, D L. (1990). “Using central prices in the decomposition of linear programs”, Manuscript, Département d’Economie Commerciale et Industrielle, University of Geneva, to appear in European Journal of Operational Research.Google Scholar
  32. Goldstein, G.A. (1991). PC-MARKAL and the MARKAL User Support System (MUSS), User’s Guide, Brookhaven National Laboratory.Google Scholar
  33. Greenberg, H.S. and Murphy, F.H. (1985). “Computing Market Equilibria with Price Regulations Using Mathematical Programming”, Operations Research 33, pp. 935–954.CrossRefGoogle Scholar
  34. Haurie, A. and Loulou, R. (1985). “Technology evaluation with MARKAL”, Ministry of Energy, Mines and Resources (Canada).Google Scholar
  35. Haurie, A. and Loulou, R. “Modeling Equilibrium and Risk…”.Google Scholar
  36. Haurie, A., Loulou, R.,Savard, G. (May 1990). “A two-level Systems Analysis Model of Power Cogeneration Under Asymetric Pricing”, Proceedings of the 1990 American Control Conference, San Diego, 2095–2099.Google Scholar
  37. Haurie, A., Loulou, R., and Savard, G. (1991). “A two-Level Systems Analysis Model of Power Cogeneration under Asymetric Pricing”, Transactions on Automatic Control to appear.Google Scholar
  38. Haurie, A., Smeers, Y., and Zaccour, G. (1992). “Toward a Contract Portfolio Management Model for a Gas Producing Firm” to appear INFOR.Google Scholar
  39. Haurie, A., Smeers, Y., and Zaccour, G. (1991). “Gas Contract Portfolio Management: a Stochastic Programming Approach”, in M. Breton, G. Zaccour (Ed.), Advances in Operations Research in the Oil and Gas Industry, Editions TECHNIP.Google Scholar
  40. Haurie, A., Zaccour, G., Smeers Y., and Legrand, J. (1987). “A Dynamic Stochastic Nash-Cournot Equilibrium Model for the European Gas Market”, Mimeo.Google Scholar
  41. Hoffman, K. (1974). “A unified framework for energy sytem planning”, in National Science Fondation and Economic Reaserch Unit - QMC, Surrey (Ed.), Energy Policy, Special Issue, p. 150.Google Scholar
  42. Jensen, D.L. and King, A.J. (1992). “Frontier: A Graphical Interface for Portfolio Optimization in a Piecewise Linear-Quadratic Risk Framework”, IBM Systems Journal 31(1).Google Scholar
  43. Johnsson, J., Bjorkqvist, O., and Wene, C.-O. (1992). “Integrated Energy-Emissions Control Planning in the Community of Uppsala”, International Journal of Energy Research, 16, pp. 173–188.CrossRefGoogle Scholar
  44. King, A J. (1988). “An Implementation of the Lagrangian Finite Generation Method” in Yu. Ermoliev and J.B. Wets (Eds.), Numerical Technique for Stochastic Optimization, Springer Verlag, New York.Google Scholar
  45. Kram, T. (1993). “National Energy Options for Reducing C02 emissions”, Volume 1: the International connection, ETSAP report (Annexe IV), ECN, Nederland.Google Scholar
  46. Kypreos, S. (1990). “Energy Scenarios for Switzerland and Emission Control, Estimated with a Normative Model”, 70, Paul Scherrer Institut, Labor fur Umwelt- und Systemanalysen.Google Scholar
  47. Kypreos, S. (August 1992). “C02 emission control in Switzerland using mathematical programming”, INFOR 30(3).Google Scholar
  48. Hogan, W. W. and WeyantJ P. (1983). “Methods and algorithms for Energy model Composition: Optimization in a Network of Process Models”, in: Lev (Ed.), Energy Models and Studies, North-Holland, Amsterdam.Google Scholar
  49. Lane, M. and Hutchinson, P. (1980). “A model for managing a certificate of deposit portfolio under uncertainty”, in M.A.H. Dempster (Ed.), Stochastic Programming, Academic Press.Google Scholar
  50. Larsson, T. and Wene, C-O. (1990). “The greenhouse effect as an uncertainty in energy planning; case study Sweden”, In J. Fenhann, H. Larsen, G.A. Mackenzie, and B. Rasmussen (Eds), Environmental Models: Emissions and Consequences, Elsevier, Amsterdam, pp. 191–201.Google Scholar
  51. Loulou, R., Lafrance, G., Surprenant, J.P. (1987). MEDEQ-MARKAL un Couplage entre ceux modèles techno-économiques du Système énergétique du Québec, RAIRO, 21(1), pp. 21–50.Google Scholar
  52. Loulou, R., El-Hachem, S., AND Zaccour, G. (May 1990). “Decomposition of multiregional energy models via augemented Lagrangean methods”, TIMS/ORSA Conference, Las Vegas.Google Scholar
  53. Loulou, R. and Savard, G. (1991). “Computation of Cooperative and Stackelberg Solutions when Players are Described by Linear Programs!!”, Proceedings of the Fourth International Symposium on Differential Games and Applications (Helsinki, August 1990), Springle-Verlag’s Lecture Notes in Control and Information Sciences, PP. 285–292.Google Scholar
  54. Marcuse, W., Bodin, L., Cherniavisky, E., and Sanborn, Y. (1976). “A dynamic time dependent model for the analysis of alternative energy policies”, in K.B. Haley (Ed.), Operational Research ’75, North Holland, Amsterdam.Google Scholar
  55. Murphy, F.H. (1987). “Equation Partitioning Techniques for Solving Partial Equilibrium Models”, European Journal of Operationnal Research, 32, PP. 380–392.CrossRefGoogle Scholar
  56. Nemhauser, L. and Wolsey, L.A. (1988). Integer and Combinatorial Optimisation, Wiley.Google Scholar
  57. Un Office cantonel de l’énergie, Déartment de l’Economie Publique, novembre 1990.Google Scholar
  58. Office des transports st de la circulation. (1990). Assainissement de l’air a Genève. Mesure a prendre dans le domaine de la politique des transports. Project en vue d’une consultation publique. Genève.Google Scholar
  59. Optimization Subroutine Library Guide and References, SC23-0519-2, IBM Corporation 1991.Google Scholar
  60. Programme Energie 2000, annual report, department of Transportation, Communication and Energy, Berne 1992.Google Scholar
  61. Rockafellar, R T and WetsR J B(1987).“Scenario and Policy Aggregation in Optimization under Uncertainty”, IIASA Working paper WP-87-119, Laxenburg, Austria.Google Scholar
  62. Roos, C. and Vial, J.-P. (1988). A polynomial method of approximate centers for linear programming, Report, Delf University of Technology, to appear in Mathematical Programming.Google Scholar
  63. Roos, C. and Vial, J.-P (1990). “Long steps with the logarithmic barrier function in linear programming”, in Economics Decision Making: Games, Econometrics and Optimization, J. Gabszewicz et al (Ed.), Elsevier Science Publishers B. V., pp. 433–441.Google Scholar
  64. RISC system/6000, IBM corporation.Google Scholar
  65. Roulet, C. -A. (1987). Energètique du batiment, Presses Polytechniques Romandes, Lausanne.Google Scholar
  66. Ryden, B., Johnsson, J. and Wene,C -O. (1990). “Integrating energy systems and environmental controls: experiences from Swedish communities”, Contribution to 13th Annual International Conference of the International Association for Energy Economics, Copenhagen, 19–21 June 1990.Google Scholar
  67. Service de l’énergie (1982). De l’étude typologique des batiments existants dans de canton de Genève au point de vue de leur consommation en énergie”, Département de l’économie publique, Genève.Google Scholar
  68. Service de l’énergie (1991). Avant projet de la conception cantonale de l’énergie, Département de l’économie publique, Genève.Google Scholar
  69. and M.J. Todd (Ed.), Optimization, North-Holland, pp. 573–629.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • E. Fragniere
    • 1
  • A. Haurie
    • 1
  1. 1.Université de GenèveSwitzerland

Personalised recommendations