Skip to main content

Assessment of viability in severely hypokinetic myocardium before revascularization and prediction of functional recovery: The role of echocardiography

  • Chapter
  • 61 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 173))

Abstract

Since the last decade, it is well established that persistent, severe myocardial dysfunction in patients with coronary artery disease does not always indicate myocardial necrosis and irreversible damage. The differentiation between viable and non viable tissue is thus of great clinical relevance in order to take an appropriate decision in the individual patient. Akinetic but viable myocardium may correspond to several different states that are important but difficult to be distinguished. The concepts of stunning and hibernation have been introduced [1, 2]; the terms are increasingly used; knowledge about their respective mechanisms has largely improved [3, 4] and several techniques have been studied for their identification [5]. These techniques can assess regional perfusion, membrane integrity, metabolism or contractility. There are several important questions to be answered in the clinical environment: Does this patient have viable myocardium? What is the extent of viable tissue? Does this patient require a revascularization procedure to improve his segmental function? Can I quantitatively predict the amount of functional recovery? What are the relative risks/benefits of the different therapeutic approaches? The answers to these questions are particularly crucial when global left ventricular function is severely depressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunwald E, Kloner RA. The stunned myocardium: Prolonged, post-ischemic ventricular dysfunction. Circulation 1982; 66: 1146–9.

    Article  PubMed  CAS  Google Scholar 

  2. Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction. Evidence for the “hibernating myocardium”. J Am Coll Cardiol 1986; 8: 1467–70.

    Article  PubMed  CAS  Google Scholar 

  3. Bolli R. Mechanism of myocardial “stunning”. Circulation 1990; 82: 723–38.

    Article  PubMed  CAS  Google Scholar 

  4. Schulz R, Guth BD, Pieper K et al. Recruitment of an inotropic reserve in moderately ischemic myocardium at the expense of metabolic recovery. A model of short-term hibernation. Circ Res 1992; 70: 1282–95.

    CAS  Google Scholar 

  5. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation 1993; 87: 1–20.

    PubMed  CAS  Google Scholar 

  6. Vatner SF. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 1980; 47: 201–7.

    PubMed  CAS  Google Scholar 

  7. Kloner RA, Przyklenk K, Patel B. Altered myocardial states. The stunned and hibernating myocardium. Am J Med 1989; 86 (Suppl 1A): 14–22.

    Article  PubMed  CAS  Google Scholar 

  8. Heyndrickx GR, Millard RW, McRitchie RJ et al. Regional myocardial function and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975; 56: 978–85.

    Article  PubMed  CAS  Google Scholar 

  9. Bolli R, Zhu W, Myers ML et al. Beta-adrenergic stimulation reverses postischemic myocardial dysfunction without producing subsequent functional deterioration. Am J Cardiol 1985; 56: 964–8.

    Article  PubMed  CAS  Google Scholar 

  10. Ellis SG, Wynne J, Braunwald E et al. Response of reperfusion-salvaged, stunned myocardium to inotropic stimulation. Am Heart J 1984; 107: 13–9.

    Article  PubMed  CAS  Google Scholar 

  11. Becker LC, Levine JH, DiPaula AF et al. Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 1986; 7: 580–9.

    Article  PubMed  CAS  Google Scholar 

  12. Biessaux Y, Benoit T, Raskinet B et al. Is myocardial stunning frequent in unstable angina? Insight from simultaneous measurements of myocardial function and flow. Eur Heart J 1994; 15: 173 (Abstr Suppl).

    Google Scholar 

  13. Fedele FA, Gewirtz H, Capone RJ et al. Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation 1988; 78: 729–35.

    Article  PubMed  CAS  Google Scholar 

  14. Schulz R, Rose J, Martin C et al. Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation 1993; 88: 684–95.

    CAS  Google Scholar 

  15. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985; 72 (Suppl. V): V123–35.

    Google Scholar 

  16. Flameng W, Suy R, Schwarz F et al. Ultrastructural correlates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: Determinants of reversible segmental asynergy post-revascularization surgery. Am Heart J 1981; 102: 846–57.

    Article  PubMed  CAS  Google Scholar 

  17. Vanoverschelde JL, Wijns W, Depre C et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 1993; 87: 1513–23.

    PubMed  CAS  Google Scholar 

  18. Bolli R. Myocardial “stunning” in man. Circulation 1992; 86: 1671–91.

    PubMed  CAS  Google Scholar 

  19. TIMI Study Group. Comparison of invasive and conservative strategies after intravenous tissue plasminogen activator in acute myocardial infarction. N Engl J Med 1989; 3201: 618–27.

    Google Scholar 

  20. Stack RS, Phillips HR III, Grierson DS et al. Functional improvement of jeopardized myocardium following intracoronary streptokinase infusion in acute myocardial infarction. J Clin Invest 1983; 72: 84–95.

    Article  PubMed  CAS  Google Scholar 

  21. Charuzi Y, Beeder C, Marshall LA et al., Improvement in regional and global left ventricular function after intracoronary thrombolysis: Assessment with two-dimensional echocardiography. Am J Cardiol 1984; 53: 662–5.

    Article  PubMed  CAS  Google Scholar 

  22. Bourdillon PDV, Broderick TM, Williams ES et al. Early recovery of regional left ventricular function after reperfusion in acute myocardial infarction assessed by serial two-dimensional echocardiography. Am J Cardiol 1989; 63: 641–6.

    Article  PubMed  CAS  Google Scholar 

  23. Zoghbi WA, Marian A, Cheirif JB et al. Time course of recovery of regional function following thrombolysis in acute myocardial infarction (TIMI): Preliminary observations for the TIMI trial phase II (Abstr). J Am Coll Cardiol 1990; 15: 233A.

    Article  Google Scholar 

  24. Schmidt WG, Sheehan FH, Von Essen R et al. Evolution of left ventricular function after intracoronary thrombolysis for acute myocardial infarction. Am J Cardiol 1989; 63: 497–502.

    Article  PubMed  CAS  Google Scholar 

  25. Pfisterer M, Zuber M, Wenzel R et al. Prolonged myocardial stunning after thrombolysis: Can left ventricular function be assessed definitely at hospital discharge? Eur Heart J 1991; 12: 214–7.

    PubMed  CAS  Google Scholar 

  26. Myers JH, Stirling MC, Choy M et al. Direct measurement of inner and outer wall thickening dynamics with epicardial echocardiography. Circulation 1986; 74: 164–72.

    Article  PubMed  CAS  Google Scholar 

  27. Lieberman AN, Weiss JL, Jugdutt BI et al. Two-dimensional echocardiography and infarct size: Relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 1981; 63: 739–46.

    Article  PubMed  CAS  Google Scholar 

  28. Sklenar J, Ismail S, Villanueva FS et al. Dobutamine echocardiography for determining the extent of myocardial salvage after reperfusion. An experimental evaluation. Circulation 1994; 90:1502–12.

    CAS  Google Scholar 

  29. Piérard LA, De Landsheere C, Berthe C et al. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: Comparison with positron emission tomography. J Am Coll Cardiol 1990; 15: 1021–31.

    Article  PubMed  Google Scholar 

  30. Barilla F, Gheorghiade M, Alam M et al. Low-dose dobutamine in patients with acute myocardial infarction identifies viable but not contractile myocardium and predicts the magnitude of improvement in wall motion abnormalities in response to coronary revascularization. Am Heart J 1991; 122: 1522–31.

    Article  PubMed  CAS  Google Scholar 

  31. Smart SC, Sawada S, Ryan T. Low-dose dobutamine echocardiography detects reversible dysfunction after thrombolytic therapy of acute myocardial infarction. Circulation 1993; 88: 405–15.

    PubMed  CAS  Google Scholar 

  32. Watada H, Ito H, Oh H et al. Dobutamine stress echocardiography predicts reversible dysfunction and quantitates the extent of irreversible damaged myocardium after reperfusion of anterior myocardial infarction. J Am Coll Cardiol 1994; 24: 624–30.

    Article  PubMed  CAS  Google Scholar 

  33. Piérard LA. Comparison of approaches in the assessment of myocardial viability and follow-up of PTCA/CABG. Int J Cardiac Imag 1993; 9: 11–7.

    Article  Google Scholar 

  34. Berthe C, Piérard LA, Hiernaux M et al. Predicting the extent and location of coronary artery disease in acute myocardial infarction by echocardiography during dobutamine in¬fusion. Am J Cardiol 1986; 58: 1167–72.

    Article  PubMed  CAS  Google Scholar 

  35. Piérard LA, Sprynger M, Carlier J. Echocardiographic prediction of the site of coronary artery obstruction in acute myocardial infarction. Eur Heart J 1987; 8: 116–23.

    PubMed  Google Scholar 

  36. Nitzberg WD, Nath HP, Rogers WJ et al. Collateral flow in patients with acute myocardial infarction. Am J Cardiol 1985; 56: 729–36.

    Article  PubMed  CAS  Google Scholar 

  37. Stahl LD, Aversano TR, Becker LC. Selective enhancement of function of stunned myocardium by increased flow. Circulation 1986; 74: 843–51.

    Article  PubMed  CAS  Google Scholar 

  38. Picaño E, Marzullo P, Gigli G et al. Identification of viable myocardium by dipyridamole-induced improvement in regional left ventricular function assessed by echocardiography in myocardial infarction and comparison with thallium scintigraphy at rest. Am J Cardiol 1992; 70: 703–10.

    Article  PubMed  Google Scholar 

  39. Bolognese L, Rossi L, Sarasso G et al. Silent versus symptomatic dipyridamole-induced ischemia after myocardial infarction: Clinical and prognosis significance. J Am Coll Cardiol 1992; 19: 953–9.

    Article  PubMed  CAS  Google Scholar 

  40. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989; 117: 211–21.

    Article  PubMed  CAS  Google Scholar 

  41. Alderman EL, Fisher LD, Litwin P et al. Results of coronary artery surgery in patients with poor left ventricular function (CASS). Circulation 1983; 68: 785–95.

    Article  PubMed  CAS  Google Scholar 

  42. Nienaber CA, Brunken RC, Sherman CD et al. Metabolic and functional recovery of ischemic human myocardium after coronary angioplasty. J Am Coll Cardiol 1991; 18: 966–78.

    Article  PubMed  CAS  Google Scholar 

  43. Ghods M, Pancholy S, Cave V et al. Serial changes in left ventricular function after coronary artery bypass: Implications in viability assessment. Am Heart J 1995; 129: 20–3.

    Article  PubMed  CAS  Google Scholar 

  44. Maes A, Flameng W, Nuyts J et al. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 1994; 90: 735–45.

    CAS  Google Scholar 

  45. Vom Dahl J, Eitzman DT, Al-Aouar ZR et al. Relation of regional function, perfusion and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation 1994; 90: 2356–66.

    Google Scholar 

  46. Eitzman D, Al-Aouar Z, Kanter HL et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992; 20: 559–65.

    Article  PubMed  CAS  Google Scholar 

  47. Nesto RW, Cohn LH, Wynne J et al. Inotropic contractile reserve: A useful predictor of increased 5 year survival and improved postoperative left ventricular function in patients with coronary artery disease and reduced ejection fraction. Am J Cardiol 1982; 50: 39–44.

    Article  PubMed  CAS  Google Scholar 

  48. Popio KA, Gorlin R, Bechtel D, Levine JA. Postextrasystolic potentiation as a predictor of potential myocardial viability: Preoperative analyses compared with studies after coronary bypass surgery. Am J Cardiol 1977; 39: 944–53.

    Article  PubMed  CAS  Google Scholar 

  49. Cigarroa CG, De Filippi CR, Brickner ME et al. Dobutamine stress echocardiography Identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 1993; 88: 430–6.

    PubMed  CAS  Google Scholar 

  50. La Canna G, Alfieri O, Giubbini R et al. Echocardiography during infusion of dobutamine for identification of reversible dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol 1994; 23: 617–26.

    Article  PubMed  Google Scholar 

  51. Afridi I, Kleiman NS, Raizner AE, Zoghbi WA. Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation 1995; 91: 663–70.

    CAS  Google Scholar 

  52. Baer FM, Voth E, Deutsch HJ et al. Assessment of viable myocardium by dobutamine transesophageal echocardiography and comparison with fluorine-18 fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 1994; 24: 343–53.

    Article  PubMed  CAS  Google Scholar 

  53. Piérard LA, Melon P, De Landsheere C et al. Identification of hibernating myocardium: Comparison between low-dose dobutamine echocardiography and positron emission tomography. Acta Cardiologica 1994; 49: 5065–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pierard, L.A. (1996). Assessment of viability in severely hypokinetic myocardium before revascularization and prediction of functional recovery: The role of echocardiography. In: Nienaber, C.A., Sechtem, U. (eds) Imaging and Intervention in Cardiology. Developments in Cardiovascular Medicine, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0115-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0115-5_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6538-2

  • Online ISBN: 978-94-009-0115-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics